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Abstract

The aim of the paper is to present a simple method to rederive some recent results concerning distribution
identities for the so called α-quantile for a real-valued stochastic process (see [1] and [2]). Also, the first dis-
crete time version of this result, which seems due to [3], shall appear in continuous time. We first propose a
(new) theorem presenting an upper and lower bound for the α-quantile for an arbitrary piecewise continuous
real-valued function. The bounds are identical if the function is linear, so if the function represents sample
paths for a stochastic process having stationary and independent increments, we can use the similar linearity in
distribution to rederive the fundamental distribution equality as studied in [1].
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1 Introduction

For some real-valued function Y = (Y (t))t≥0, and a fixed 0 < T <∞, the quantity

QY (α, T ) = inf

{
x ∈ R :

1

T

∫ T

0

1(Y (s) ≤ x)ds > α

}
, 0 ≤ α < 1,

where 1(C) is the indicator for a set C, and R the real line, is called the α-quantile for Y . If Y is some stochastic
process with sample paths that are right-continuous with left-hand limits, there has recently been some interest in
finding the distribution of QY (α, T ), see references, where the basic result seems to be in [3]. One interest today
for studying α-quantiles is from option pricing, a major issue in financial mathematics.

The tool in this paper is to characterize QY (α, T ) more closely in terms of Y , see Theorem 2.1, and use this to
correct and rederive in a simple and unified manner known results obtained in [1]-[3], see (2.3)-(2.9). The proof of
Theorem 2.1 is simple, and derives an upper and lower bound for QY (α, T ). Finally, we give an example to indicate
the difficulties of obtaining distribution equalities when ’nice’ properties of Y are abandoned, and we obtain only
some distribution inequalities.

Define

MY (T, x) =
1

T

∫ T

0

1(Y (s) ≤ x)ds , x ∈ R , (1.1)

and in the sequel we write QY instead of QY (α, T ) whenever the value of α is not specific.

2 Characterization of α-quantiles

For any real-valued function Y = (Y (t))t≥0 that is right-continuous with left-hand limits, it is readily checked that

QY (0, T ) = inf
[0,T ]

Y (s) ,
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so the more challenging part is to understand QY (α, T ) for α > 0. If Y is continuous we can also directly see that

QY ≤ sup
[0,αT ]

Y (s) ,

since MY (T, x) > α, for any x > sup[0,αT ] Y (s).
The starting point is to prove the following theorem.

Theorem 2.1 Let Y = (Y (t))t≥0 be some real-valued function which is right-continuous with left-hand limits.
Then for α ∈ [0, 1), QY satisfies

sup
ε∈(0,αT ]

{
inf

s∈[0,(1−α)T )
Y (s+ ε)

}
≤ QY ≤ inf

ε∈[0,(1−α)T )

{
sup

s∈(0,αT ]

Y (s+ ε)

}
. (2.1)

Proof: Let first ε be such that 0 ≤ ε < (1− α)T , and split MY (T, x) as

MY (T, x) =
1

T

∫ ε+αT

ε

1(Y (s) ≤ x)ds+
1

T

∫
(0,T ]\(ε,ε+αT ]

1(Y (s) ≤ x)ds .

For x > sups∈(ε,ε+αT ] Y (s), we see that the first integral is equal to α, and since also Y (ε + αT ) < x, the right-
continuity together with ε < (1− α)T , implies that Y (s) < x, for s in some interval to the right of ε+ αT . Hence
the second integral is positive, and therefore MY (T, x) > α, so by the definition of QY and since x was arbitrary,
we have

QY ≤ sup
s∈(ε,ε+αT ]

Y (s) , (2.2)

and consequently since ε is arbitrary

QY ≤ inf
ε∈[0,(1−α)T )

{
sup

s∈(ε,ε+αT ]

Y (s)

}
.

Let now ε satisfy 0 < ε ≤ αT , and split instead as

MY (T, x) =
1

T

∫ ε+(1−α)T

ε

1(Y (s) ≤ x)ds+
1

T

∫
(0,T ]\(ε,ε+(1−α)T ]

1(Y (s) ≤ x)ds .

If x < infs∈[ε,ε+(1−α)T ) Y (s), we see that the first term vanishes, and since the second term is less than (or equal
to) α, we must have QY ≥ x, and since x is arbitrary, we have

QY ≥ inf
s∈[ε,ε+(1−α)T )

Y (s) ,

and consequently

QY ≥ sup
ε∈(0,αT ]

{
inf

s∈[ε,ε+(1−α)T )
Y (s)

}
,

and finally we have arrived at (2.1). 2

It is not obvious whether the two bounds in (2.1) in general are identical and therefore we have unfortunately
not obtained

QY = inf
ε∈[0,(1−α)T )

{
sup

s∈(0,αT ]

Y (s+ ε)

}
.

However, if Y is linear, that is, Y (t) = β t, for some real-valued constant β, then we do have equality in (2.1). In
fact, since Y (s+ ε) = Y (s) + Y (ε) (and Y is continuous), we obtain from (2.1) that

QY = sup
s∈[0,αT ]

Y (s) + inf
s∈[0,(1−α)T ]

Y (s) .

Since processes with stationary and independent increments have paths that are ’linear in distribution’, the following
theorem will appear.
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Theorem 2.2 Let X = (X(t))t≥0 be some real-valued stochastic process with paths that are right-continuous with
left-hand limits, and assume that X has stationary and independent increments, and X(0) = 0. Then for α ∈ [0, 1),
we have

QX
D
= sup
s∈[0,αT ]

X(s) + inf
s∈[0,(1−α)T ]

X̃(s) , (2.3)

where
D
= stands for equality in distribution, and X and X̃ are independent copies.

Proof: Denote the left-hand and right-hand side in (2.1) by LY and RY , respectively. Since X has stationary and
independent increments with X(0) = 0, the process (X(s + ε) − X(ε))s≥0 is, for an arbitrary ε, independent of
X(ε), and has the same distribution as X. Therefore, we can write

X(s+ ε)
D
= X(ε) + X̃(s) (2.4)

where the process X̃ = (X̃(s))s≥0 has the same distribution as X and is independent of X(ε). A fortiori, this holds

if we take for X̃ an independent copy of X.

We shall also state a finite dimensional version of (2.4). Let n > 1 be a finite number, and 0 = s0 + ε0 <
s1 + ε1 < · · · < sn + εn, some (non-negative) values, where we without restriction further can assume sj−1 < sj ,
and εj−1 < εj , for j = 1, . . . , n. Then for any ’small’ interval dηj around ηj ∈ R, (dη0 = 0) we find together with
(2.4)

P (X(s1 + ε1) ∈ dη1 , . . . , X(sn + εn) ∈ dηn)

= P (X(sj + εj)−X(sj−1 + εj−1) ∈ d(ηj − ηj−1) , j = 1, . . . , n)

=

n∏
j=1

P (X(sj − sj−1 + εj − εj−1) ∈ d(ηj − ηj−1))

=

n∏
j=1

P (X(εj − εj−1) + X̃(sj − sj−1) ∈ d(ηj − ηj−1))

= P (X(ε1) + X̃(s1) ∈ dη1 , . . . , X(εn) + X̃(sn) ∈ dηn) . (2.5)

Since inf and sup associate measurable mappings on the space of functions that are right-continuous with left-hand
limits, we get in particular by (2.5), that for any finite sets F,G ⊂ [0,∞)

sup
ε∈G

{
inf
s∈F

X(s+ ε)

}
D
= sup
ε∈G

X(ε) + inf
s∈F

X̃(s) . (2.6)

Let then S represent a dense subset of R, for instance the rational numbers, and consider Fm, Gn ⊂ S, m,n =
1, 2, . . . , increasing sequences of finite sets, such that limm Fm = S, and limnGn = S. By (2.6) we conclude that

sup
ε∈(0,αT ]∩Gn

{
inf

s∈[0,(1−α)T )∩Fm

X(s+ ε)

}
D
= sup
ε∈(0,αT ]∩Gn

X(ε) + inf
s∈[0,(1−α)T )∩Fm

X̃(s) . (2.7)

Fixing first n, and letting m tend to infinity (and finally letting n tend to infinity) in (2.7), we can use the standard
’continuity property’ of a probability measure for increasing (and decreasing) sets, to obtain

sup
ε∈(0,αT ]∩S

{
inf

s∈[0,(1−α)T )∩S
X(s+ ε)

}
D
= sup
ε∈(0,αT ]∩S

X(ε) + inf
s∈[0,(1−α)T )∩S

X̃(s) .

Thus

LX
D
= sup
ε∈[0,αT ]

X(ε) + inf
s∈[0,(1−α)T ]

X̃(s) ,
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where we overall due to the right-continuity can disregard S, and also for the first term used that supε∈[0,αT ]X(ε) =

supε∈(0,αT ]X(ε) (right-continuity), and for the second term the fact that X̃ cannot have any fixed times of discon-

tinuity (it has stationary and independent increments), implying that infs∈[0,(1−α)T ] X̃(s) = infs∈[0,(1−α)T ) X̃(s)
a.s. Repeating these argument starting with interchanging sup and inf on the left of (2.6), we obtain the same
result for RX , and consequently (2.3) is proved. 2

Identity (2.3) was formulated and proved in [1], mainly by using the result in [3] (Wendel), who used a charac-
teristic function argument to obtain the result with the discrete time version of the process W = (W (t))t≥0

W (t) =

[t]∑
k=1

Zk , W (0) = 0 ,

where Z1, Z2, . . . are i.i.d. random variables, and [t] is the integer value of t. So (2.3) could also be proved by
making an appropriate discretiziation of [0, T ], and take Zk = X(k/n)−X((k − 1)/n), say, for k = 1, 2, . . . , [Tn],
and finally make a limit argument as n tends to infinity. This seems what the approach in [1] is aiming at.

With the technique presented for proving (2.3), we could also obtain

QW
D
= sup
s∈[0,αT ]

W (s) + inf
s∈[0,(1−α)T )

W̃ (s) , (2.8)

which is the time continuous analogue of the classical result by Wendel, where W and W̃ are independent copies.
We omit further comments and details, but shall instead focus on the more general renewal reward process, which
is the jump process

R(t) =

N(t)∑
k=1

Yk ,

where the pairs (S1, Y1), (S2, Y2), . . . are i.i.d., and Sn = Tn − Tn−1, n = 1, 2, . . . , are the inter-occurrence times
where Tn is the time of the nth jump (T0 = 0), and N(t) is the number of jumps over [0, t]. We state the result in
[2] in the following theorem, and consequently comment on a slight discrepancy to his version.

Theorem 2.3 Let R = (R(t))t≥0 and R̃ = (R̃(t))t≥0 be independent copies of a renewal reward process. Then

QR
D
= sup
s∈[0,αT ]

R(s) + inf
s∈[0,(1−α)T )

R̃(s) . (2.9)

Proof: Since R(t) only changes at the jump times, we can write

inf
t∈[0,η]

R(t) = inf
Tn∈[0,η]

R(Tn) , η > 0 ,

(and similarly with sup). We then find that

sup
ε∈(0,αT ]

{
inf

s∈[0,(1−α)T )
R(s+ ε)

}
= sup

Tn∈[0,αT ]

{
inf

Tn+m−Tn∈[0,(1−α)T )
R(Tn+m)

}
D
= sup

Tn∈[0,αT ]

R(Tn) + inf
T̃m∈[0,(1−α)T )

R̃(T̃m)

= sup
s∈[0,αT ]

R(s) + inf
s∈[0,(1−α)T )

R̃(s) ,

where T̃1, T̃2, . . . are the jump times of R̃(t), and we used that

R(Tn+m)
D
= R(Tn) + R̃(T̃m) ,

and as in proof of Theorem 2.2, we can make any finite dimension distribution identity. Consequently, these
observations lead to (2.9). 2
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The approach in [2] is mainly basd on some integral equation techniques (that seem specific for the case) for
his prove of (2.9), which he states with the second term as infs∈[0,(1−α)T ] R̃(s), and can make a difference to (2.9)
if fixed non-stochastic times of jumps are considered (take e.g. all (Sn, Yn) = (1,−1), T = 2 and α = 1/2, and
calculate QR).

We shall finally consider a simple example, where the process has independent but in general no version with
stationary increments, and then see how the bounds in (2.1) still can give some result.

Example 2.1. Consider the Gaussian process X = (X(t))t≥0

X(t) = B(t) +

∫ t

0

λ(s)ds ,

where B = (B(t))t≥0 is a standard Brownian motion, and λ(t) is a piecewise continuous function. Below, increasing

means non-decreasing and vice versa. Assume first that λ(t) is increasing, and with Λ(t) =
∫ t
0
λ(s)ds, we then have

Λ(s+ t) ≥ Λ(s) + Λ(t) , s, t ≥ 0 . (2.10)

With the same notation as in Theorem 2.2, and since a Brownian motion has stationary and independent increments,
we get together with (2.10) that

X(s+ ε)
D
≥ X(ε) + X̃(s) , (2.11)

which means in terms of distribution functions, that

P (X(s+ ε) ≤ u) ≤ P (X(ε) + X̃(s) ≤ u) , u ∈ R .

To obtain this inequality in finite dimension, let 0 = s0 + ε0 < s1 + ε1 < · · · < sn + εn, be as in the proof of
Theorem 2.2, and by (2.5) we immediately get

P (B(s1 + ε1) ≤ u1 , . . . , B(sn + εn) ≤ un)

= P (B(ε1) + B̃(s1) ≤ u1 , . . . , B(εn) + B̃(sn) ≤ un) , (2.12)

where u1, . . . , un ∈ R, and we recall B̃(t) = X̃(t)− Λ(t). Using first (2.10) and then (2.12), we get

P (X(s1 + ε1)− Λ(s1)− Λ(ε1) ≤ u1 , . . . , X(sn + εn)− Λ(sn)− Λ(εn) ≤ un)

≤ P (B(s1 + ε1) ≤ u1 , . . . , B(sn + εn) ≤ un)

= P (X(ε1) + X̃(s1)− Λ(s1)− Λ(ε1) ≤ u1 , . . . , X(εn) + X̃(sn)− Λ(sn)− Λ(εn) ≤ un) ,

and since this holds for any u1, . . . , un, we conclude that

P (X(s1 + ε1) ≤ u1 , . . . , X(sn + εn) ≤ un)

≤ P (X(ε1) + X̃(s1) ≤ u1 , . . . , X(εn) + X̃(sn) ≤ un) ,

for any u1, . . . , un ∈ R, which states our finite dimensional version of (2.11). Consequently, for any finite sets
F,G ⊂ [0,∞), we have

sup
ε∈G

{
inf
s∈F

X(s+ ε)

}
D
≥ sup
ε∈G

X(ε) + inf
s∈F

X̃(s) ,

and repeating the steps following (2.6), we find

LX
D
≥ sup
s∈[0,αT ]

X(s) + inf
s∈[0,(1−α)T ]

X̃(s) ,
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and therefore

QX
D
≥ sup
s∈[0,αT ]

X(s) + inf
s∈[0,(1−α)T ]

X̃(s) .

In the same manner we find that

QX
D
≤ sup
s∈[0,αT ]

X(s) + inf
s∈[0,(1−α)T ]

X̃(s) ,

if λ(t) is decreasing. 2
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