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Abstract

The present paper deals with conditional mean values for analysing prospective events in risk theory, mainly
related to reserve evaluation. In some (Markov) cases, for instance the classical life insurance set-up, Kol-
mogorov’s backward differential equations suffice as a constructive tool, together with basic martingale relations.
However, in many important (Markov) cases we need more refined martingale techniques. We shall mainly focus
on cases with random time horizon defined as an exit time. The martingale results are carried out in a marked
point process set-up, hereunder by use of the important concept of an intensity measure.

Keywords: Thiele’s differential equation, compound distribution, martingale, optional sampling, marked point
process, exit time.

1 Introduction

Applications of stochastic calculus in life and non-life insurance have until now not been a major issue. It has
been lightly touched in life insurance where the classical idea is to model the policy in accordance with a Markov
(jump) process of finite state space. Using the nice structure of Kolmogorov’s backward differential equations, one
can establish the so-called Thiele’s differential equations, which give a tool for identifying the prospective reserves,
see Hoem (1969). However, he did not use any kind of martingale relations.

A generalization of the classical life insurance model was studied by Møller (1993) in a semi-Markov case where
payment functions and transition intensities were allowed to depend on the duration in the visiting state. A simple
martingale argument seemed sufficient to obtain the result. We shall here combine the methods in Møller (1993)
and (1995) to see how conditional expectations can be obtained and evaluated under a random time horizon, which
in particular will be defined as an exit time for some measurable set. We give a practical example.

Basic in the analysis is that our stochastic phenomena occur at random times (points), T1 < T2, . . . , and are
represented by corresponding marks Z1, Z2, . . . . The sequence (Tn, Zn)n≥1 is called a marked point process, see
below, and in this manner our formulation is applicable for both life and non-life insurance problems, and many
other situations of interest in risk theory.

Davis (1993), who introduced the concept of PD (piecewise-deterministic) Markov processes, has also shown in-
terest for conditional means, but his motivation is different (extended generator, strong Markov property, cemetary
state).

In Section 2 we outline the concept of a marked point process and the associated martingale results as stated
in Brémaud (1981).

In Section 3, we stress the martingale approach and the techniques to obtain prospective mean values from
a system of differential equations. First we pay attention to the semi-Markov model in Møller (1993). We shall
present a different proof based on Doob’s optional sampling theorem. Then we mention the classical Markov jump
case under a fixed period of time. Finally, we shall indicate how a compound distribution function can be obtained,
which is also analysed in Møller (1996) for fixed finite time horizons. Throughout we assume that the force of
interest is fixed over time. However generalizations to stochastic interest are indeed feasible.
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2 Some elements of point process theory

Assume there is given a filtered probability space (Ω,F ,Ft, P ) satisfying the usual conditions, that is, the space
is complete and the filtration (Ft)t≥0 is right-continuous. In the sequel all random variables are assumed to be
defined on (Ω,F , P ).

Basic in the studies are the concept of marked point processes and the associated martingale theory. A point
process is a sequence (Tn, Zn)n≥1 of stochastic pairs, where T1, T2, . . . are non-negative and represent times of
occurrence of some phenomena represented by the stochastic elements Z1, Z2, . . . , called the marks, which are
assumed to take values in some measurable space Z endowed with a σ-algebra E . This model framework can be
convenient for the analysis of insurance problems. In non-life insurance, the points typically represent times of
occurrence of claims, and the marks represent the individual claim amounts. In life insurance the points could
represent times of transition between states of a process governing the policy, and the state entered or the pair of
states involved in the transition could represent the mark.

Let R and R+ denote the real line and non-negative half line endowed with their usual Borel σ-algebras B and
B+, respectively. Let I(F ) denote the indicator of a set F in F . Introduce for each A ∈ E the counting measure

N(t, A) =

∞∑
i=1

I(Ti ≤ t, Zi ∈ A), (2.1)

which counts the number of jumps in the time interval (0, t] with marks taking values in A. In particular N(t) =
N(t,Z). The counting processes lead to the natural filtration

FNt = σ(N(s,A), s ≤ t, A ∈ E).

Another important issue is the existence of an intensity process: Assume that N(t, A) admits an Ft-intensity ν(t, A)
(FNt ⊂ Ft) assumed to be bounded over finite intervals, informally defined as

ν(t, A)dt = E(N(dt, A) | Ft−) + o(dt), (2.2)

where Ft− = ∨s<tFs is the information prior to time t. We abbreviate ν(t) = ν(t,Z), which is the intensity of
N(t). We can also write the intensity on the form

ν(t, A) = ν(t)G(t, A), G(t, A) =

∫
z∈A

G(t, dz), (2.3)

where G(t, A) is a probability, and is interpreted as the conditional probability given all information prior to time t
and that a jump occurred at time t, that the associated mark will belong to A. An important result (e.g. Brémaud,
1981, pp. 27, 235) states that the process

Mt =

∫
(0,t]

∫
z∈Z

H(s, z)(N(ds, dz)− ν(s, dz)ds),

where H is some Ft-predictable process (indexed by Z) is a zero mean Ft-martingale, that is,

E

[∫
(t,v]

∫
z∈Z

H(s, z)N(ds, dz) Ft

]
= E

[∫
(t,v]

∫
z∈Z

H(s, z)ν(s, dz)ds Ft

]
, (2.4)

for any t < v, whenever

E

[∫
(0,t]

∫
z∈Z
|H(s, z)|ν(s, dz)ds

]
<∞,

for any t > 0. In the sequel it should be sufficient to know that, in particular, any process with left continuous or
deterministic paths (indexed by Z) is predictable.

In the sequel we will also write
∫ t
s

and
∫
A

instead of
∫
(s,t]

and
∫
z∈A, respectively.
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3 The martingale approach

Let X = (Xt)t≥0 be a jump process taking values in the measurable space (Z, E). This leads to the associated
marked point process (Tn, Zn)n≥1, where T1 < T2 < . . . denote the jump times of X, and Z1, Z2, . . . are the
corresponding values of X at the jumps, Zn = XTn . Define the cadlag (right continuous with left hand-limits)
process

Ut =
∑
n≥0

(t− Tn)I(Tn ≤ t < Tn+1), (3.1)

that measures the time spent in the visiting state of Xt. We shall assume that the process X̃ = (X̃t)t≥0, X̃t =
(Xt, Ut), is a (PD) Markov process given by transition functions

p(s, x̃; t, B) = P (X̃t ∈ B | X̃s = x̃), s < t,

where B is in the σ-algebra E ⊗ B+ and x̃ = (x, u). Further, we assume that X̃ admits an intensity function
(t, u, x)→ λ(x,u)(t, A) for each A ∈ E , given by

λ(x,u)(t, A) = lim
h↘0

p(t, x̃; t+ h,A×R+)

h
, x 6∈ A.

Again we write λ(x,u)(t) = λ(x,u)(t,Z\x). Then the intensity process of N(t, A) exists and is given by

ν(t, A) = λX̃t(t, A)I(Xt 6∈ A).

We introduce the measurable payment functions (t, u, x)→ ζ(x,u)(t) and (t, u, x, y)→ b(x,u)(t, y), where ζ(x,u)(t)
plays the role of an (annual) annuity or premium rate, assumed to be non-negative (negative) if it represents
premium (annuity, pension). If X jumps from x to y at time t with a duration of u in state x, an amount of
b(x,u)(t, y) is paid to the insured. We assume that the annual interest is fixed and let δ denote the corresponding
force of interest.

Let now our stochastic risk business be represented by a stochastic process (Rt)t≥0 driven by the (stochastic)
differential equation

dRt = δdtRt + ζX̃t(t)dt−
∫
Z
bX̃t−(t, z)N(dt, dz), (3.2)

which has a self-explained interpretation. The minus in (3.2) indicates that b(x,u)(t, y) is normally interpreted as
non-negative. Let first T ≤ ∞, be a fixed period of time. Using integration by parts, it is readily checked that the
process

Qt(T ) =

∫ T

t

e−δ(s−t)
[∫
Z
bX̃s−(s, z)N(ds, dz)− ζX̃s(s)ds

]
+ lX̃T (T )e−δ(T−t), (3.3)

satisfies (3.2) with RT = lX̃T (T ), where (t, u, x) → l(x,u)(t) is some measurable function representing a cost by

time T . We shall use the convention lX̃T (T )e−δT = 0 if T = ∞, obtained for instance by replacing l(x,u)(t) with
l(x,u)(t)I(t <∞).

An actuary would then typically be interested in the conditional mean E[Qt(T ) | FNt ] for t ∈ [0, T ], which due
to Markov property only depends on FNt via X̃t, and together with (2.4) the expectation is given by

E[Qt(T ) | X̃t = (x, u)] =

∫ T

t

e−δ(s−t)E(t,x,u)

[∫
Z\Xs

bX̃s(s, z)λX̃s(s, dz)− ζX̃s(s)

]
ds

+e−δ(T−t)E(t,u,x) [ lX̃T (T ) ], (3.4)

where E(t,u,x) denotes the conditional expectation given X̃t = (x, u). If we knew a version of ’Kolmogorov’s back-

ward differential equations’ for X̃ we could simply evaluate E(t,u,x) wrt. these, and differentiate to obtain a system

3



of differential equations for (3.4) of similar structure. So this approach can be done if X is of Markov type, implying
that λ(x,u)(t) is assumed independent of u, and if furthermore all payment functions are not depending on u, see
comments following (3.10). For classical Markov theory we refer to Doob (1953).

To open for further flexibility and applications, we shall complicate matters further by operating under a random
time horizon given by some Ft-stopping time τ , that is, {τ ≤ t} ∈ Ft for all t ≥ 0. In particular we shall assume
that τ is given as the first exit time

τBC = inf{t ≥ 0 : X̃t 6∈ BC},

for some set BC = B × C, where B ∈ E and C ∈ B+. Define also

τBC,t = inf{s ≥ t : X̃s 6∈ BC}

= t+ inf{s ≥ 0 : X̃t+s 6∈ BC}.

Note that τBC,τBC = τBC . We define τBC,t =∞ for any t, if X̃s ∈ BC for all s ≥ t. We write

Q0(τBC) =

∫ τBC

0

e−δs
[∫
Z
bX̃s−(s, z)N(ds, dz)− ζX̃s(s)ds

]
+ lX̃τBC

(τBC)e−δτBC ,

and define the process

Γt =

∫ t

0

e−δs
[∫
Z
bX̃s−(s, z)N(ds, dz)− ζX̃s(s)ds

]
.

Then for each t > 0, we can decompose as

Q0(τBC) = I(τBC ≤ t)Q0(τBC) + I(τBC > t){Γt +Qt(τBC,t)e
−δt}

= ΓτBC∧t + I(τBC ≤ t)lX̃τBC (τBC)e−δτBC + I(τBC > t)Qt(τBC,t)e
−δt, (3.5)

where we have used that

I(τBC > s) = I(τBC > t)I(τBC,t > s), ∀s > t,

and we recall from (3.3) that

Qt(τBC,t) =

∫ τBC,t

t

e−δ(s−t)
[∫
Z
bX̃s−(s, z)N(ds, dz)− ζX̃s(s)ds

]
+ lX̃τBC,t

(τBC,t)e
−δ(τBC,t−t).

We are now concerned with evaluating the mean process

VFNt (t) = E[Qt(τBC,t) | FNt ], t ≥ 0,

which again due to the FNt -Markov property depends through FNt only via X̃t, which we abbreviate VX̃t(t), where
(t, u, x)→ V(x,u)(t) is the measurable function

V(x,u)(t) = E[Qt(τBC,t) | X̃t = (x, u)].

We now have the boundary condition

V(x,u)(t) = l(x,u)(t), ∀(x, u) 6∈ BC. (3.6)

For identifying (t, u) → V(x,u)(t) (for (x, u) ∈ BC) from a system of differential equations we first assume that
E|Q0(τBC)| <∞, and define the FNt -martingale

Mt = E[Q0(τBC) | FNt ], t ≥ 0 .
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By (3.5) and (3.6) we can write

Mt = ΓτBC∧t + I(τBC ≤ t)lX̃τBC (τBC) e−δτBC + I(τBC > t) e−δt VX̃t(t)

= ΓτBC∧t + e−δ τBC∧t VX̃τBC∧t
(τBC ∧ t), t ≥ 0. (3.7)

This relation can be used to prove the following generalization of Theorem 3.1 in Møller (1993).

Theorem 3.1 Let t → Dt be a function playing the role of Ut between the jumps, that is, Dt is non-negative
with derivative dDt = dt. Then over the continuity points of λ(x,u)(t, A), b(x,u)(t, z) and ζ(x,u)(t), the functions
t→ V(x,Dt)(t) satisfy the system of differential equations

dV(x,Dt)(t)

dt
= [δ + λ(x,Dt)(t)]V(x,Dt)(t) + ζ(x,Dt)(t)

−
∫
Z\x

λ(x,Dt)(t, dz) [b(x,Dt)(t, z) + V(z,0)(t)], t ∈ (0, τ∗C), x ∈ B, (3.8)

with the boundary condition

V(x,u)(t) = l(x,u)(t), ∀(x, u) 6∈ BC, t ≥ 0,

where τ∗C is the (deterministic) time

τ∗C = inf{t ≥ 0 : Dt 6∈ C}.

Proof: Stopping the martingale at T1 the first jump time of X, the process t→Mt∧T1
becomes an FNt -martingale

(optional sampling), and then in particular has the constant mean value

E(x,u)[Mt∧T1
] = V(x,u)(0), ∀t ≥ 0.

However, we observe that τBC ∧ T1 = τ∗C ∧ T1, P(x,u)-a.s. for any (x, u) ∈ BC, since we can only leave BC (via C)
deterministically before T1 when we start in BC, and if do not leave BC before T1, then this will in particular not
occur deterministically. Using (3.7), we then get for any t ∈ (0, τ∗C)

Mt∧T1 = Γt∧T1 + e−δ t∧T1 VXt∧T1 (t ∧ T1)

= Γt∧T1 + I(T1 > t)e−δtV(x,u+t)(t) + I(T1 ≤ t)e−δT1V(Z1,0)(T1). (3.9)

The P(x,u)-distribution of (T1, Z1) is given by

P(x,u)(T1 ∈ dt, Z1 ∈ A) = exp

(
−
∫ t

0

λ(x,u+s)(s)ds

)
λ(x,u+t)(t, A)dt.

For the first term in (3.9), we can by (2.4) write

E(x,u)[Γt∧T1 ] = E(x,u)

∫ t

0

I(T1 ≥ s)e−δs
[∫
Z\x

b(x,u+s)(s, z)λ(x,u+s)(s, dz)− ζ(x,u+s)(s)

]
ds

=

∫ t

0

e−
∫ s
0
(δ+λ(x,u+η)(η))dη

[∫
Z\x

b(x,u+s)(s, z)λ(x,u+s)(s, dz)− ζ(x,u+s)(s)

]
ds
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and by evaluating the rest of the (constant) mean in (3.9), we can finally, by differentiation, arrive at (3.8) with
Dt = u+ t, and since this only depends on t, u via the sum, we get the desired result. 2

Note that (3.8) can be viewed as a system of partial differential equations. Namely, if we assume that (t, u)→
V(x,u)(t) has continuous partial derivatives for t ∈ (0, τ∗C) and u > 0, we can write

dV(x,Dt)(t)

dt
=
∂V(x,Dt)(t)

∂t
+
∂V(x,Dt)(t)

∂u
, t ∈ (0, τ∗C).

In the case where τBC is bounded by a finite horizon T , say, occurring e.g. if τBC is replaced by τBC ∧ T , we can
then hope to evalute (3.8) (numerically) together with the initial condition

V(x,u)(T ) = l(x,u)(T ), ∀(x, u) ∈ BC.

A special case that leads to studying the distribution of first exit time for X̃, is obtained with b(x,u)(t, y),
ζ(x,u)(t) and δ identically equal to zero, and furthermore with l(x,u)(t) = I(t < T ) for some T ≤ ∞. Then

Qt(τBC,t) = I( inf
t≤s<T

X̃s 6∈ BC),

and

V(x,u)(t) = P ( inf
t≤s<T

X̃s 6∈ BC | X̃t = (x, u)),

is the probability that X̃ exits BC after time t, given X̃t = (x, u). Also, the boundary condition obviously reads

V(x,u)(t) = 1, (x, u) 6∈ BC.

We refer to Møller (1995) for some aspects of this probability for studying ruin probabilities for some PD-Markov
processes.

Another special case is when X becomes Markov, obtained by letting λ(x,u)(t) be independent of u, which we
denote by λx(t). We then modify τBC as

τD = inf{t ≥ 0 : Xt 6∈ D}, D ∈ E ,

and τD,t accordingly. If we further let the payment functions be independent of u, denoted ζx(t), bx(t, y) and lx(t)
respectively, and modify Qt( ) to this case, the mean process

VFNt (t) = E[Qt(τD,t) | FNt ], t ≥ 0,

depends then on FNt only via Xt, and is given by the function t→ Vx(t), defined as

Vx(t) = E[Qt(τD,t) |Xt = x].

Then we immediately obtain the following corollary.

Corollary 3.2 Over the continuity points of λx(t, A), bx(t, z) and ζx(t), the functions t→ Vx(t) satisfy the system
of differential equations

dVx(t)

dt
= [δ + λx(t)]Vx(t) + ζx(t)

−
∫
Z\x

λx(t, dz) [bx(t, z) + Vz(t)], t > 0, x ∈ D, (3.10)

with the boundary condition

Vx(t) = lx(t), ∀x 6∈ D, t ≥ 0.
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If we restrict to operate under a fixed period of time T ≤ ∞, the system in (3.10) will hold for all t ∈ (0, T ) and
x ∈ Z with no boundary condition. This is the trivial case and is merely a consequence of the classical Kolmogorov
backward differential equations, which read

∂p(s, x; t, A)

∂s
= λx(s)p(s, x; t, A)−

∫
Z\x

p(s, z; t, A)λx(s, dz),

where

p(s, x; t, A) = P (Xt ∈ A |Xs = x),

is the transition function. Modifying (3.4) accordingly, we can namely write

Vx(t) =

∫ T

t

e−δ(s−t)
∫
Z

[∫
Z\w

bw(s, z)λw(s, dz)− ζw(s)ds

]
p(t, x; s, dw)ds

+e−δ(T−t)
∫
Z
lz(T )p(t, x; T, dz),

and by differentiation the desired system for Vx(t) arises.

An application of the results above could be:

Example 3.1. Let X be of Markov type given by the particular form Xt = (St, Nt), where St has finite state
space J = {1, 2, . . . , J} with J an integer, and Nt denotes the number of jumps of X over [0, t]. Let m be some
fixed integer. In the following we interpret Nt as the number of claims over [0, t].

Say that the company has the rule, that it as maximum tolerates m claims, and if the m + 1 th claim occurs
at time t it immediately terminates the contract and thereafter pays an amount of A(t) to the policyholder. This
corresponds to a case with the random insurance period of

τ = inf{t ≥ 0 : Nt = m+ 1},

which is equal to τD with

D = J × {0, . . . ,m}.

Since Nt only takes jumps af size 1, we obtain the reserves from (3.10) with

l(i,n)(t) = A(t)I(n = m+ 1),

which corresponds to evaluate the system

dV(j,n)(t)

dt
= [δ + λ(j,n)(t)]V(j,n)(t) + ζ(j,n)(t)

−
∑
i 6=j

λ(j,n)(t; i, n+ 1) [b(j,n)(t; i, n+ 1) + V(i,n+1)(t)], j ∈ J , n = 0, 1 . . . ,

under the boundary conditions

V(i,m+1)(t) = A(t), V(i,n)(t) = 0, ∀i ∈ J , n = m+ 2, . . . ,

where λ(j,n)(t; i, n+ 1) is the intensity for the transition (j, n)→ (i, n+ 1) at time t. So we have a finite (and then
solvable) system. A reduction to a finite system will not appear if we had operate under a fixed period of time.
Also, contrary to a fixed period of time, it is important to note that V(i,n)(t) still depends on n for any i ∈ J even
if the intensity and payment functions are assumed independent of n. 2
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There are of course many interesting cases to be studied using similar techniques and the necessary aspects of
general martingale theory. For instance, another aspect of conditional mean could be to study the distribution of
the random variable CτD , where Ct is the jump process

Ct =

N(t)∑
i=1

bXTi−(Ti, Zi)

=

∫ t

0

∫
Z
bXs−(s, z)N(ds, dz).

Define then the function t→ Fx(t, r), r ∈ R, as

Fx(t, r) = P

(∫ τD,t

t

∫
Z
bXs−(s, z)N(ds, dz) ≤ r Xt = x

)
,

which satisfies the boundary condition

Fx(t, r) = I(r ≥ 0), ∀x 6∈ D.

Repeating the technique in (3.5) now with Q0(τD) = I(
∑N(τD)
i=1 bXTi−(Ti, Zi) ≤ r), it will appear that the process

Mt = FXt∧τD (t ∧ τD, r − Ct∧τD ),

becomes an FNt -martingale. Copying the same techniques for proving Theorem 3.1, we can arrive at the following
theorem.

Theorem 3.3 Over the continuity points of λx(t, A) and bx(t, z), the functions t→ Fx(t, r) satisfy for each r ∈ R,
the system of differential equations

dFx(t, r)

dt
= λx(t)Fx(t, r)−

∫
Z\x

λx(t, dz)Fz(t, r − bx(t, z)), t > 0, x ∈ D, (3.11)

with the boundary condition

Fx(t, r) = I(r ≥ 0), ∀x 6∈ D, t ≥ 0.

As above we can evaluate (3.11) numerically if we replace τD with τD ∧ T for some finite T , and use the initial
condition Fx(T, r) = I(r ≥ 0), for all x ∈ D.
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