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Abstract

The aim of the present paper is to propose a stochastic approach for describing the return of an investment,
and study its applications in insurance. The process governing the return of the investment is assumed to
have bounded variation over finite intervals and possess a jump part. Attention is restricted to cases where the
process has independent increments and is subject to fluctuations given by a Markovian environment. In the
first case direct calculations are obtainable for evaluating moments of present and accumulated values. In the
last case we establish differential equations akin to the celebrated Thiele’s differential equation in life insurance.
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1 Introduction

Pricing of insurance products is usually evaluated on a basis where no interest is taking into account or (in life
insurance) is assumed to be fixed over time. On the other hand, the return of the investments made by the
company (typically in shares and bonds) are affected over time by market values of the assets and inflation,
the latter especially for long term investments in bonds. To obtain a more realistic assessment of the insurance
companys solvency and the pricing of its products, it would benefit if the impact of the investment returns could be
taken into account in the insurance benefits and evaluation basis (see e.g. Daykin et al. (1994) for some practical
actuarial problems related to inflation and investment). In this paper we will suggest some ideas and techniques on
such matters using the theory of marked point processes. We shall primarily focus on evaluating expected values
for moments of present (discounted) and accumulated values. Other aspects on applications of point processes in
risk theory can be seen in e.g. Møller (1991), (1993) and (1995).

Stochastic calculus applied in financial economics today is primarily used for pricing options and futures, and
typically approached by modelling the return of a risky asset by some diffusion process. Extensions incorporating
a jump part in the return process can e.g. be seen in Aase (1988) and references therein. Other motivations to
stochastic interest can be found in Dufresne (1990), Paulsen (1993), Dietz (1992) and Bühlmann (1992).

In Section 2, we outline the basic idea and introduce the concept of a marked point process and its associated
intensity measure, which are the building stones for further applications. In Subsection 2.1 we assume that the
interest process has independent increments, and we make direct calculations for evaluating higher order moments
of discounted and accumulated values. In Subsection 2.2, we treat a more complex case where the economy
is assumed to be heterogeneous modelled in accordance with a Markovian environment represented by a finite
number of states. For this model we can at least obtain a system of differential equations for the respective mean
values.

In Section 3, we extend the model from Subsection 2.2 by incorporating payment functions, depending on the
different states of the environment, which typically should play the role of e.g. premium, pensions and lump sum
payments. We shall there focus on the reserve process, which is defined as the conditional expected value of future
discounted net expenses based on all available information, and establish a system of differential equations for
evaluating the statewise reserves.
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2 The interest process

It is well-known that an amount, 1 say, invested at time zero in an economic environment where the force of interest
δ is assumed constant, has a value at time t of

Rt = exp(δ t).

This is equivalent to solving the integral equation

Rt = 1 +

∫ t

0

Rsδds,

and informally we can write

Rt =
∏

0<s≤t

[1 + δds].

The present value Vt of a unit payable at time t becomes

Vt = exp(−δ t).

However, the return of an investment (in e.g. shares or bonds) can be uncertain due to unforeseen events
such as inflation and changes in market values of the asset. We shall represent this phenomenon in a stochastic
process It governing the return process, and it will also be referred to as the interest process. It is assumed to be
a cadlág (right-continuous paths possessing left-hand limits) process with paths of bounded variation over finite
intervals, fulfilling I0 = 0. It can then be decomposed into its continuous and discontinuous part, denoted Ict and
Idt , respectively, as follows

It = Ict +
∑

0<s≤t

Ids ,

where Idt = It − It− and It− = lims↗t Is.
Assume now that It jumps at the times T1 < T2 < . . . and let Y1, Y2 . . . denote the corresponding size of the

jumps. We obtain a sequence (Tn, Yn)n≥1 called a marked point process, where Tn refer to the points and Yn the
marks. In the applications below, the mark will represent the random amount of price change of the asset.

Let 1(F ) denote the indicator for a set F ∈ F , and introduce the counting measures

N(t, A) =

∞∑
n=1

1(Tn ≤ t, Yn ∈ A), A ∈ B,

which counts the number of jumps over [0, t] with marks in A, where B denotes the Borel σ-algebra on R the real
line, and we define N(t) = N(t,R). The interest process can then be written as

It = Ict +

∫
(0,t]

∫
R
y N(ds, dy),

meaning, in the applications below, that a random increase (decrease) in the price of the asset shall correspond
to an upward (downward) jump in It. A random increase (decrease) in inflation shall then be represented as a

decrease (increase) in the price. In the sequel, we will write
∫ b

a
for
∫

(a,b]
.

The stochastic development of a unit invested at time zero is now assumed to be governed by the stochastic
integral equation

Xt = 1 +

∫ t

0

Xs−dIs

= 1 +

∫ t

0

Xs−

[
dIcs +

∫
R
y N(ds, dy)

]
. (2.1)
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The solution to (2.1) is given as (see e.g. Liptser and Shiryayev, 1989, p. 122)

Et(I) = exp(Ict )
∏

0<s≤t

[
1 +

∫
R
y N(ds, dy)

]
, (2.2)

which is called the Doléans exponential and (2.1) is called the Doléans equation. Whenever Et(I) 6= 0, the present
value of a unit payable at time t is defined as E−1

t (I), and by (2.2) it is seen to be given as

E−1
t (I) = exp(−Ict )

∏
0<s≤t

[
1−

∫
R

y

1 + y
N(ds, dy)

]
, (2.3)

which is the solution to the Doléans equation

Xt = 1−
∫ t

0

Xs−

[
dIcs +

∫
R

y

1 + y
N(ds, dy)

]
.

Using Newton’s formula

(a+ b)n =

n∑
q=0

(
n
q

)
aqbn−q, a, b ∈ R, n ≥ 1,

we get by (2.2) that

E n
t (I) = exp(nIct )

∏
0<s≤t

[
1 +

∫
R
y N(ds, dy)

]n

= exp(nIct )
∏

0<s≤t

[
1 +

n∑
q=1

(
n
q

)∫
R
yqN(ds, dy)

]
,

where we have used the property(∫
R
y N(dt, dy)

)m

=

∫
R
ymN(dt, dy), m = 0, 1, 2 . . .

Thus E n
t (I) satisfies the Doléans equation

Xt = 1 +

∫ t

0

Xs−

[
ndIcs +

n∑
q=1

(
n
q

)∫
R
yqN(ds, dy)

]
,

and similarly we obtain

E −nt (I) = exp(−nIct )
∏

0<s≤t

[
1 +

n∑
q=1

(
n
q

)∫
R

(
−y

1 + y

)q

N(ds, dy)

]
.

In the case where Yn ∈ (−1,∞) a.s. (almost surely), we can also view the products above as exponentials. We
illustrate for n = 1. Taking the logarithm we obtain

log

 ∏
0<s≤t

[
1 +

∫
R
y N(ds, dy)

] =
∑

0<s≤t

log

(
1 +

∫
R
y N(ds, dy)

)

=

∫ t

0

∫
R

log(1 + y)N(ds, dy), a.s.
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Thus

∏
0<s≤t

[
1 +

∫
R
y N(ds, dy)

]
= exp

(∫ t

0

∫
R

log(1 + y)N(ds, dy)

)
, a.s.,

and similarly for the product in (2.3), we can write

∏
0<s≤t

[
1−

∫
R

y

1 + y
N(ds, dy)

]
= exp

(∫ t

0

∫
R

log(1− y

1 + y
)N(ds, dy)

)

= exp

(
−
∫ t

0

∫
R

log(1 + y)N(ds, dy)

)
, a.s.

However, such relations seem not of particular importance for evaluating the mean values of E n
t (I) and E −nt (I).

For further analysis we need the concept of an intensity process. Introduce the natural filtration

FN
t = σ(N(s,A), s ≤ t, A ∈ B),

and assume that N(t, A) admits a cadlag FN
t -intensity process λt(A) informally given by

λt(A)dt = E[N(dt, A) | FN
t−] + o(dt),

where o(h)/h→ 0 as h→ 0 and FN
t− = ∨s<tFN

s , is the information prior to time t.

It can be more convenient to write the intensity as

λt(A) = λt

∫
A

Gt(dy),

where Gt is a probability,
∫
RGt(dy) = 1, and λt is the intensity of N(t). In particular, we get

E[N(t, A)] = E

[∫ t

0

λs(A)ds

]
,

whenever E[N(t, A)] <∞. More generally we know that (see Brémaud, 1981, p. 235)

Mt =

∫ t

0

∫
R
H(s, y)(N(ds, dy)− λs(dy)ds),

is a zero mean FN
t -martingale, where H is an FN

t -predictable process such that

E

[∫ t

0

∫
R
|H(s, y)|λs(dy)ds

]
<∞.

In particular

E

[∫ t

0

∫
R
H(s, y)N(ds, dy)

]
= E

[∫ t

0

∫
R
H(s, y)λs(dy)ds

]
. (2.4)

In the sequel it should be sufficient to know that, in particular, any process with left-continuous or deterministic
paths is predictable. For definitions of predictable σ-algebra and predictable processes we refer to Brémaud (1981,
pp. 8, 9, 234, 235).
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2.1 The independent increment case

In this subsection we will assume that the interest process has independent increments. This will be obtained by
assuming that (N(t, A))t≥0 has independent increments, which is equivalent to stating that N(t, A) for each A is
a Poisson process with the intensity being deterministic. Furthermore, we shall assume that Ict is of the form

Ict =

∫ t

0

δsds, (2.5)

where δt is the force of interest, assumed to be a piecewise continuous function. As a consequence of the independent
increment property of N(t, A), Gt is given by

P (Yn ∈ A |Tn = t) =

∫
A

Gt(dy), ∀n ≥ 1.

It is now possible using a direct approach to obtain expressions for the moments of the processes in (2.2) and
(2.3). Define rt = E[Et(I)] and obtain by (2.1), (2.4) and (2.5) that

rt = 1 +

∫ t

0

rs

[
δs +

∫
R
y λs(dy)

]
ds,

whenever∫ t

0

∫
R
|y|λs(dy)ds <∞,

which leads to the solution

rt = exp

(∫ t

0

[
δs +

∫
R
y λs(dy)

]
ds

)
. (2.6)

Define r̃t = E[E−1
t (I)] and obtain as for (2.6) that

r̃t = exp

(
−
∫ t

0

[
δs +

∫
R

y

1 + y
λs(dy)

]
ds

)
, (2.7)

whenever∫ t

0

∫
R
| y

1 + y
|λs(dy)ds <∞.

Consequently, the expected value of ET (I) is equivalent to finding the accumulated amount of 1 at time T , in
an environment with the deterministic force of interest

ηt = δt + λtE[Yt], E[Yt] =

∫
R
y Gt(dy).

Note that

rt = exp

(∫ t

0

δsds+ E

[∫ t

0

∫
R
y N(ds, dy)

])
,

and

r̃t = exp

(
−
∫ t

0

δsds− E
[∫ t

0

∫
R

y

1 + y
N(ds, dy)

])
.

Define rnt = E[E n
t (I)] and r̃ n

t = E[E −nt (I)], and use similar arguments for obtaining (2.6) and (2.7) to arrive at

rnt = exp

(∫ t

0

[
nδs +

n∑
q=1

(
n
q

)∫
R
yqλs(dy)

]
ds

)
,
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and

r̃ n
t = exp

(∫ t

0

[
−nδs +

n∑
q=1

(
n
q

)∫
R

(
−y

1 + y

)q

λs(dy)

]
ds

)
,

whenever∫ t

0

∫
R
|y|nλs(dy)ds <∞,

∫ t

0

∫
R
| y

1 + y
|n λs(dy)ds <∞.

A generalization of the independent increment assumption is to let It be a Markov process satisfying the equation

It =

∫ t

0

δs(Is)ds+

∫ t

0

∫
R
y N(ds, dy), (2.8)

where (t, x)→ δt(x) is some realvalued function such that t→ δt(x) is interpreted as the force of interest allowed
to depend on the present state of the interest process. Furthermore, the intensity process of N(t, A) may depend
on the past only via It. An example could be a version of the ’Ornstein-Uhlenbeck’ process by considering the
stochastic differential equation

dIt = (µ+ α(It − µ))dt+

∫
R
y N(dt, dy),

where µ, α are constants.

It seems then no longer feasible to make direct calculations for evaluating similar mean values as above, however
it can be proved, by use of a similar martingale approach introduced in Møller (1993), that these can be identified
from an integro-differential equation, which can be solved numerically. We will not pursue the process in (2.8)
further, but proceed to the case below that leads to finite systems of differential equations, which is very convenient
in a numerical implementation, and also the techniques used for deriving the equations can be based on the classical
Kolmogorov’s backward differential equations.

2.2 A Markovian environment

In this section we will introduce a heterogeneous environment for the economy given by different states, representing
for instance different levels of inflation or different prices for a share or bond.

We consider the case of a finite number J of states, and assume that transitions between the states are governed
by a Markov process (Θt)t≥0. The state space is denoted by J = {1, 2, . . . , J}.

We associate a marked point process, (Tn, Zn)n≥1 where Tn denote the jump times of Θt, and Zn are the
respective states entered, that is, ΘTn

= Zn. Introduce the associated counting measures

N(t, j) =

∞∑
n=1

1(Tn ≤ t, ΘTn = j), j ∈ J .

We assume that there exist deterministic piecewise continuous functions λij(t), i 6= j, i, j ∈ J , such that N(t, j)
admits the intensity process λΘt j(t)1(Θt 6= j). Also, we will assume that there are given deterministic piecewise
continuous functions δi(t) and γij(t), such that the interest process is given by

It =

∫ t

0

δΘs
(s)ds+

∑
i∈J

∫ t

0

γΘs− i(s)N(ds, i). (2.9)

We write λk(t) =
∑

j 6=k λkj(t), and below we shall write
∑

i instead of
∑

i∈J . The process in (2.9) tells, that
the economy changes stochastically in accordance with a Markovian environment, and between the jumps, return
on the investment is earned continuously and deterministically with a rate depending on the present state of Θt.
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Throughout, we will assume that γij(t) 6= −1, i 6= j, such that E−1
t (I) exists for all t. Modifying (2.2) and (2.3) in

accordance with (2.9), we get

Et(I) = exp

(∫ t

0

δΘs(s)ds

) ∏
0<s≤t

[
1 +

∑
i

γΘs− i(s)N(ds, i)

]
(2.10)

and

E−1
t (I) = exp

(
−
∫ t

0

δΘs
(s)ds

) ∏
0<s≤t

[
1−

∑
i

γΘs− i(s)

1 + γΘs− i(s)
N(ds, i)

]
, (2.11)

respectively. More generally for n ≥ 1, we have

E n
t (I) = exp

(
n

∫ t

0

δΘs
(s)ds

) ∏
0<s≤t

[
1 +

∑
i

n∑
q=1

(
n
q

)
γΘs− i(s)

qN(ds, i)

]

and

E −nt (I) = exp

(
−n
∫ t

0

δΘs(s)ds

) ∏
0<s≤t

[
1 +

∑
i

n∑
q=1

(
n
q

)(
−γΘs− i(s)

1 + γΘs− i(s)

)q

N(ds, i)

]
.

To evaluate the means of E n
t (I) and E −nt (I), we can no longer make a direct (forward) approch, but instead we

fix an interval [0, T ], T < ∞, and for identifying, E[ET (I) |Θ0] say, we introduce the cadlág process t → E(t,T ](I)
given by

E(t,T ](I) = exp

(∫ T

t

δΘs(s)ds

) ∏
t<s≤T

[
1 +

∑
i

γΘs− i(s)N(ds, i)

]
, t ∈ [0, T ],

where E(T,T ](I) = 1. Using integration by parts, it is readily checked that E(t,T ](I) satisfies the backward Doléans
equation

E(t,T ](I) = 1 +

∫ T

t

E(s,T ](I)dIs.

Introduce the functions Qj(t) by

Qj(t) = E[E(t,T ](I) |Θt = j], j ∈ J .

In the following we abbreviate EΘt
[ ] = E[ |Θt]. Taking conditional expectation E[ | FN

t ] and using the tower
property E[E[ | FN

t ] | FN
s ] = E[ | FN

s ], s ≤ t, together with the Markov property and (2.9), we obtain

QΘt(t) = 1 + EΘt

∫ T

t

QΘs(s)dIs

= 1 + EΘt

∫ T

t

QΘs(s)δΘs(s)ds+ EΘt

∫ T

t

∑
i

Qi(s)γΘs− i(s)N(ds, i)

= 1 + EΘt

∫ T

t

QΘs
(s)δΘs

(s)ds+ EΘt

∫ T

t

∑
i

Qi(s)γΘsi(s)λΘsi(s)1(Θs 6= i)ds,

where the last equality sign is obtained using the martingale property of the process

Mt =

∫ t

0

∑
i

Qi(s)γΘs− i(s)[N(ds, i)− λΘsi(s)1(Θs 6= i)ds].
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Introduce now the transition probabilities

Pij(s, t) = P (Θt = j |Θs = i), s ≤ t,

and arrive at

Qk(t) = 1 +
∑
j

∫ T

t

Pkj(t, s)Qj(s)δj(s)ds+
∑
j

∫ T

t

Pkj(t, s)
∑
i 6=j

Qi(s)γji(s)λji(s)ds, (2.12)

and finally together with Kolmogorov’s backward differential equations

dPij(t, u)

dt
= λi(t)Pij(t, u)−

∑
l 6=i

λil(t)Plj(t, u), i, j ∈ J , t ≤ u,

we can state:

Theorem 2.1 Over the continuity points of λij(t), γij(t) and δi(t), the functions Qk(t) satisfy the system of
differential equations

dQk(t)

dt
= [−δk(t) + λk(t) ]Qk(t)−

∑
i 6=k

λki(t)[ 1 + γki(t) ]Qi(t), t ∈ (0, T ), k ∈ J . (2.13)

Proof: Follows by differentiation in (2.12).

The system in (2.13) is evaluated under the initial condition Qk(T ) = 1, k ∈ J , and the mean of ET (I) can
then be found as

E[ET (I) |Θ0] = QΘ0
(0).

Consequently, we can establish differential equations for evaluating the mean of E n
T (I), ∀n ≥ 1. Introduce the

cadlág process

E n
(t,T ](I) = exp

(
n

∫ T

t

δΘs
(s)ds

)

×
∏

t<s≤T

[
1 +

∑
i

n∑
q=1

(
n
q

)
γΘs− i(s)

qN(ds, i)

]
,

and again using integration by parts we now establish the backward Doléans equation

E n
(t,T ](I) = 1 +

∫ T

t

E n
(s,T ](I)dI(n)

s ,

where

dI
(n)
t = nδΘt

(t)dt+
∑
i

n∑
q=1

(
n
q

)
γΘt− i(t)

qN(dt, i).

Introduce the functions Q
(n)
j (t), defined as

Q
(n)
j (t) = E[E n

(t,T ](I) |Θt = j], j ∈ J ,

where, of course, Q
(1)
j (t) = Qj(t). By virtue of the techniques leading to Theorem 2.1, we immediately get:

8



Theorem 2.2 Over the continuity points of λij(t), γij(t) and δi(t), the functions Q
(n)
k (t) satisfy the system of

differential equations

dQ
(n)
k (t)

dt
= [−nδk(t) + λk(t) ]Q

(n)
k (t)

−
∑
i 6=k

λki(t)

(
1 +

n∑
q=1

(
n
q

)
γki(t)

q

)
Q

(n)
i (t), t ∈ (0, T ), k ∈ J .

For evaluate the mean of E−nT (I), we introduce the process

E−n(t,T ](I) = exp

(
−n
∫ T

t

δΘs
(s)ds

)

×
∏

t<s≤T

[
1 +

∑
i

n∑
q=1

(
n
q

)(
−γΘs− i(s)

1 + γΘs− i(s)

)q

N(ds, i)

]
,

and define the functions

Q̃
(n)
j (t) = E[E−n(t,T ](I) |Θt = j], j ∈ J ,

to stating:

Theorem 2.3 Over the continuity points of λij(t), γij(t) and δi(t) the functions Q̃
(n)
k (t) satisfy the system of

differential equations

dQ̃
(n)
k (t)

dt
= [nδk(t) + λk(t) ] Q̃

(n)
k (t)

−
∑
i 6=k

λki(t)

(
1 +

n∑
q=1

(
n
q

)(
−γki(t)

1 + γki(t)

)q
)
Q̃

(n)
i (t), t ∈ (0, T ), k ∈ J .

3 An extended model

As a further illustration we will extend the Markov model above by introducing piecewise continuous deterministic
payment functions bi(t) and bij(t), where bi(t) is the rate of payment (premium, pension) when the environment
is in state i, and bij(t) is a lump sum paid immediately upon a transition from state i to j. In this manner an
insurance company has a way of adjusting its pension payment or premium in accordance with the current state
of the economy. We treat pensions as negative payments, premium and lump sums as positive. For the sake of
illustration and notational convenience we omit the possibility of a mortality rate.

Let Et(I) be given by (2.10), which is the solution to the Doléans equation

dXt = Xt−

(
δΘt(t)dt+

∑
i

γΘt− i(t)N(dt, i)

)
.

Then, as discussed above, E−1
t (I) is given by (2.11) and is the solution to

dXt = −Xt−

(
δΘt

(t)dt+
∑
i

γΘt− i(t)

1 + γΘt− i(t)
N(dt, i)

)
. (3.1)
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Let the stochastic surplus over the time interval [0, t] be represented by the process Rt given by the stochastic
differential equation

dRt = Rt−

(
δΘt

(t)dt+
∑
i

γΘt− i(t)N(dt, i)

)
+ bΘt

(t)dt−
∑
i

bΘt− i(t)N(dt, i). (3.2)

Under the condition R0 = 0 it is readily checked that

Rt = Et(I)

∫ t

0

E−1
s (I)

(
bΘs

(s)ds−
∑
i

bΘs− i(s)N(ds, i)

)
.

The stochastic (discounted) net expenses over the time interval (t, T ] is defined by

R(t,T ] = Et(I)

∫ T

t

E−1
s (I)

(∑
i

bΘs− i(s)N(ds, i)− bΘs(s)ds

)
, t ∈ [0, T ],

which is also obtained by solving (3.2) with initial condition zero at time T . An insurer is typically interested in
the process

VFN
t

(t) = E[R(t,T ] | FN
t ]

= Et(I)E

[∫ T

t

E−1
s (I)

(∑
i

bΘs− i(s)N(ds, i)− bΘs(s)ds

)
FN

t

]
, t ∈ [0, T ]. (3.3)

Defining E−1
(t,s](I) = Et(I)E−1

s (I), t ≤ s, we get

E−1
(t,s](I) = exp

(
−
∫ s

t

δΘu(u)du

) ∏
t<u≤s

[
1−

∑
i

γΘu− i(u)

1 + γΘu− i(u)
N(du, i)

]
, t ≤ s,

so (3.3) reduces (the Markov property) to a function depending only on Θt, abbreviated VΘt(t), where

Vi(t) = E

[∫ T

t

E−1
(t,s](I)

(∑
i

bΘs− i(s)N(ds, i)− bΘs
(s)ds

)
Θt = i

]
, t ∈ [0, T ], i ∈ J

We can now use similar techniques as in Section 2 to establish a system of differential equations for evaluating
Vi(t). First, rewrite R(t,T ] as

R(t,T ] = Et(I)

∫ T

t

E−1
s− (I)

(∑
i

bΘs− i(s)

1 + γΘs− i(s)
N(ds, i)− bΘs

(s)ds

)
, t ∈ [0, T ],

and using integration by parts, we observe that t→ R(t,T ] satisfies

dR(t,T ] = R(t,T ]

(
δΘt(t)dt+

∑
i

γΘt− i(t)

1 + γΘt− i(t)
N(dt, i)

)

−
∑
i

bΘt− i(t)

1 + γΘt− i(t)
N(dt, i) + bΘt(t)dt, t ∈ [0, T ],

and therefore under the condition R(T,T ] = 0, we have

R(t,T ] = −
∫ T

t

R(s,T ]

(∑
i

γΘs− i(s)

1 + γΘs− i(s)
N(ds, i) + δΘs(s)ds

)

+

∫ T

t

(∑
i

bΘs− i(s)

1 + γΘs− i(s)
N(ds, i)− bΘs

(s)ds

)
, t ∈ [0, T ].
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Using arguments similar to those for obtaining (2.12) we can write:

VΘt
(t) = −EΘt

∫ T

t

(∑
i

Vi(s)γΘs− i(s)

1 + γΘs− i(s)
N(ds, i) + VΘs

(s)δΘs
(s)ds

)

+EΘt

∫ T

t

(∑
i

bΘs− i(s)

1 + γΘs− i(s)
N(ds, i)− bΘs(s)ds

)

= −EΘt

∫ T

t

(∑
i

Vi(s)γΘs i(s)

1 + γΘs i(s)
λΘsi(s)1(Θs 6= i) + VΘs

(s)δΘs
(s)

)
ds

+EΘt

∫ T

t

(∑
i

bΘs i(s)

1 + γΘs i(s)
λΘsi(s)1(Θs 6= i)− bΘs(s)

)
ds.

Hence, using the transition probabilities, we get

Vk(t) = −
∑
j

∫ T

t

Pkj(t, s)

∑
i 6=j

Vi(s)γji(s)

1 + γji(s)
λji(s) + Vj(s)δj(s)

 ds

+
∑
j

∫ T

t

Pkj(t, s)

∑
i 6=j

bji(s)

1 + γji(s)
λji(s)− bj(s)

 ds, t ∈ [0, T ], k ∈ J ,

and by differentiation we obtain:

Theorem 3.1 Over the continuity points of λij(t), γij(t), δi(t), bi(t) and bij(t) the functions Vk(t) satisfy the
system of differential equations

dVk(t)

dt
= [ δk(t) + λk(t) ]Vk(t) + bk(t)−

∑
i 6=k

λki(t)

{
bki(t) + Vi(t)

1 + γki(t)

}
, t ∈ (0, T ), k ∈ J .
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