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Chapter 1

Introduction

In this thesis we will introduce parts of the modern theory of stochastic calculus
and study its applications in risk theory.

In life and non-life insurance one is typically interested in evaluating certain
functionals of processes describing the insurance business. A simple example could
be the problem of evaluating the mean or higher order moments of jump (risk)
processes or perhaps more gernerally, the mean of transforms of jump processes.

Other functionals arise as conditional expectations, for instance the expected
present value of future (net) expenses evaluated on basis of some available infor-
mation. This is relevant in connection with evaluation of premiums and of reserves
or the liabilities of the insurance business. In life insurance, Thiele’s differential
equation is a celebrated tool for evaluating premium and reserves. The policy is
typically assumed to be governed by a Markov process of finite state space. It
is then possible to obtain a tractable expression for the state reserves in terms
of integrals depending on the transitions probabilities and payments. Then using
the nice structure of Kolmogorov’s differential equations, one can establish a set
of differential equations for the state reserves, see Hoem (1969). However if we
allow for more complicated models, for instance by assuming that the transition
intensities or the payments depend on the duration in the visiting state, it seems
not tractable to go via transition probabilities. Since we are primarily interested
in the reserve process itself, it would be more convenient to arrive directly at the
differential equations for the state reserves. This is indeed possible, and we will
introduce the idea and techniques to achieve this. This opens the possibility of in-
troducing more complex insurance products taking further variables into account
in the evaluation basis, such as for instance stochastic interest or the accumulated
(stochastic) surplus.

Another important quantity in risk theory, useful in solvency assessments of
a company, is the probability of ruin, which is defined mathematically as the
first time the risk business becomes negative. The problem is to evaluate this
probability over some period of time (finite or infinite) as a function of the initial
reserve. A way of evaluting this probability is to establish its associated partial
integro-differential equation, and then solve it numerically. In classical risk theory
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where the involved processes have stationary and independent increments, one can
heuristically derive the differential equations. But for more complicated processes
we must be more precise and also understand how to obtain the generalizations.
This problem will also be treated.

In Chapter 2 we outline the basic mathematics used throughout. The building
stones are delivered by the theory of marked point processes, hereunder counting
process theory. This is an ideal tool for studying insurance models, since most
phenomena of interest in insurance occur at random times with a stochastic event
associated.

To obtain useful results, we will further apply the highly developed theory of
martingales and stochastic integration. This elegant theory, makes it possible to
give a remarkably general and informative presentation of important issues in risk
theory.

A common line in the thesis is to identify a martingale in the system involving
the functional of interest. By finding an integral representation of it, we can under-
stand the properties of the functional, hereunder identify a (stochastic) differential
equation for evaluating the functional.

In Chapter 3, we study the application of this idea to obtain general versions
of Thiele’s differential equation. The chapter is a revised version of the results in
[23].

Chapter 4 treats the change of variable formula, which can be helpful for eval-
uating means of transforms of processes or to arrive at differential equations for
different functionals, but the techniques are not essential for the analysis in this
thesis. We give some examples of applications, hereunder derivation of an integro-
differential equation for compound distribution functions.

Chapter 5 treats the problem of establishing differential equations for function-
als measuring the probability of ruin.

Chapter 6 treats examples of establishing diffusion approximations for a risk
business, hereunder for jump processes. These results could be combined with
those in Chapter 5 to find differential equations for evaluating the probability of
ruin when the risk business is approximated by a diffusion process. Nevertheless,
it is beyond the scope of the thesis to treat this.
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Chapter 2

Some elements of point
process theory

All random variables encountered in the sequel are assumed to be defined on some
probability space (Ω,F , P ).

Basic in the studies are the concept of marked point processes and the asso-
ciated martingale theory. A point process is a sequence (Tn, Zn)n≥1 of stochastic
pairs, where T1, T2, . . . are non-negative and represent times of occurrence of some
phenomena represented by the stochastic elements Z1, Z2, . . . , called the marks,
which are assumed to take values in some measurable space Z endowed with a
σ-algebra E . This model framework is ideal for studying insurance problems. In
non-life insurance, the points typically represent times of occurrence of claims, and
the marks represent the individual claim amounts. In this case one is interested
in the risk process

Xt =

Nt∑
n=1

Zn,

which is the total amount of claims over a time interval (0, t], where Nt is the
number of claims over (0, t]. Another example is where the marks represent the
delay time from occurrence of the claim to notification, possibly combined with
the individual claim amount. In life insurance the points could represent times of
transition between states of a process governing the policy, and the state entered
or the pair of states involved in the transition could represent the mark.

Let Rn denote the n-dimensional euclidian space, where for n = 1 we abbrevi-
ate R = R1. The non-negative half line is denoted R+. The spaces are endowed
with their usual Borel σ-algebras, where B and B+ denote the Borel σ-algebra on
R and R+, respectively. Let I(F ) denote the indicator of a set F in F .
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We shall mainly operate with jump (risk) processes of the form

X
(f)
t =

Nt∑
n=1

f(Tn, Zn),

where f : R+×Z → R is some Borel measurable mapping, and Nt represents the

number of events in the time interval (0, t]. The process X
(f)
t could e.g. represent

the total amount of claims over (0, t], where each claim amount is multiplied by a
discount factor. Throughout the points will be referred to as the jump times.

A key point in the sequel is to rewrite X
(f)
t according to the stochastic integral

X
(f)
t =

∫
(0,t]

∫
z∈Z

f(s, z)dNs(dz), (0.1)

where Nt(A) is the counting measure

Nt(A) =

∞∑
i=1

I(Ti ≤ t, Zi ∈ A), (0.2)

which counts the number of jumps in the time interval (0, t] with marks taking
values in A ∈ E . In particular Nt = Nt(Z). The counting processes lead to the
natural filtration

FNt = σ(Ns(A), s ≤ t, A ∈ E).

Another important issue is the existence of an intensity process: Assume there
is given a filtration Ft (Ft ⊇ FNt ) such that Nt(A) admits an Ft-intensity λt(A)
assumed to be bounded over finite intervals, satisfying

λt(A)dt = E(dNt(A) | Ft−) + o(dt), (0.3)

where Ft− = ∨s<tFs is the information prior to time t. We abbreviate λt = λt(Z),
which is the intensity of Nt. We can also write the intensity on the form

λt(A) = λt

∫
A

Gt(dz), (0.4)

where Gt is a probability,
∫
Z Gt(dz) = 1, and is interpreted as the conditional

probability given all information prior to time t and that a jump occurred at time
t, that the associated mark will belong to (z, z + dz). An important result (e.g.
Brémaud, 1981, p. 27) states that the process

Mt(A) = Nt(A)−
∫ t

0

λs(A)ds (0.5)

for each A ∈ E is a zero mean Ft-martingale whenever E[Nt(A)] < ∞, t > 0.
Also, one can integrate predictable processes w.r.t. the martingale in (0.5) and

4



obtain martingales (Brémaud, 1981, pp. 27, 235). For definition of the predictable
σ-algebra and predictable processes we refer to Brémaud, 1981, pp. 8-9, 235). In
the sequel it should be sufficient to know that, in particular, any process with left
continuous or deterministic paths is predictable. Consequently, we obtain that

Mt = X
(f)
t −

∫ t

0

∫
z∈Z

f(s, z)λs(dz)ds

=

∫
(0,t]

∫
z∈Z

f(s, z)(dNs(dz)− λs(dz)ds), (0.6)

becomes a zero mean Ft-martingale whenever

E

[∫ t

0

∫
z∈Z
|f(s, z)|λs(dz)ds

]
<∞.

The process

Ct =

∫ t

0

∫
z∈Z

f(s, z)λs(dz)ds,

is called the compensator of X
(f)
t .

A constructive theorem used throughout is the following (Brémaud 1981, p.
239):

Theorem 0.1 Any FNt -martingale Mt admits a representation of the form

Mt = M0 +

∫
(0,t]

∫
z∈Z

H(s, z)(dNs(dz)− λs(dz)ds), (0.7)

where H is some FNt -predictable process such that∫
(0,t]

∫
z∈Z
|H(s, z)|λs(dz)ds <∞, a.s.

In the sequel we will also write
∫ t
s

∫
Z instead of

∫
(s,t]

∫
z∈Z .

5



Chapter 3

Expected values in life
insurance (Thiele’s
differential equation)

In this chapter we present the idea of establishing quite general differential equation
for evaluating premiums and reserves in life insurance. The idea is illustrated by
some examples of interest in insurance.

Section 1 treats the classical Markov model, where the policy is assumed to be
governed by a Markov process of finite state space. Also a formula for solving the
equivalence premium and the state reserves numerically is discussed.

Section 2 treats a more general model where the transition intensities and
the payments may depend on the duration in the visiting state. A numerical
example with qualifying period for disabled lives for a three state Markov model
is considered.

To illustrate further, we finally treat a case where the intensities and payments
also could depend on the number of jumps occurred.

Section 1 is overall a special case of Section 2, but it may be easier to understand
the technique used when starting with a less complex model with simpler notation.
We will then in Section 2 allow, by reference to Section 1, skipping calculations
that are similar. In Section 2 it seems not possible in general to establish formulas
for evaluating the state reserves and equivalence premium.

3.1 The Markov model

The development of an insurance policy issued at time 0, say, is described by a
time inhomogeneous Markov process Xt with finite state space J = {1, . . . , J}.
The process is assumed to be cadlag (right continuous with left limits) and starts
out in state 1; X0 = 1.

Let T1 < T2 < . . . denote the jump times of the process, and let Z1, Z2, . . . be
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the states entered at the corresponding jump times and correspond to the marks.
Define T0 = 0 and Z0 = 1.

We will operate with the multidimensional counting process (Nij(t))(i,j)∈J de-
fined by

Nij(t) =

∞∑
n=1

I(Tn ≤ t, (Zn−1, Zn) = (i, j)),

which counts the number of transitions from i to j in the time interval (0, t].
Introduce also Yi(t) = I(Xt = i). The intensity process (0.3) in Chapter 2 is
determined by

P (dNij(t) = 1 | FNt−) = λij(t)Yi(t)dt, i 6= j,

where t→ λij(t) are deterministic functions and the natural filtration is generated
by (Nij)(i,j)∈J .

Consider now a classical life insurance policy with the following terms:

(a) Premiums and annuity benefits to the insured are paid continuously with rate
bi(t), whenever the policy is in state i. The mappings t→ bi(t) from R+ to R are
assumed to be piecewise continuous and non-stochastic. Premiums are negative
and annuity benefits are positive.

(b) A non-stochastic lump sum of bij(t) is paid to the insured immediately upon
a transition from i to j at time t. The mappings t → bij(t) from R+ into R are
assumed Borel measurable.

For simplicity, we assume that the force of interest δ is constant. Put v = e−δ,
which is the annual discount factor. In the following we write

∑
i and

∑
i 6=j in-

stead of
∑
i∈J and

∑
i∈J

∑
j 6=i, respectively.

Fix a time T < ∞, and define the present value at time 0 of the stochastic
surplus V0 by

V0 =
∑
i

∫ T

0

vsbi(s)Yi(s)ds+
∑
i6=j

∫ T

0

vsbij(s)dNij(s)

= V(0,t] + V(t,T ], t ≤ T, (1.1)

where

V(0,t] =
∑
i

∫ t

0

vsbi(s)Yi(s)ds+
∑
i 6=j

∫ t

0

vsbij(s)dNij(s),

V(t,T ] =
∑
i6=j

∫ T

t

vsbij(s)dNij(s) +
∑
i

∫ T

t

vsbi(s)Yi(s)ds,
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with the assumption that E|V0| <∞.

The prospective reserve process VFt(t) is defined as

VFt(t) = E(
1

vt
V(t,T ] | Ft). (1.2)

Due to the Markov property, the conditional expectation in (1.2) depends only on
Xt, hence the abbreviation VXt(t), where

Vi(t) = E(
1

vt
V(t,T ] |Xt = i).

Put Mt = E(V0 | FNt ). Since V(0,t] is FNt -measurable, we get by (1.1) and (1.2)
that

Mt = V(0,t] + vtVXt(t). (1.3)

Under the assumption that the state reserves t → Vi(t), i ∈ J , are right-
continuous functions with left-hand limits (see Theorem 1.2 below) we can then
obtain by (1.3) that Mt is a cadlag martingale over [0, T ] with left-hand limits
given by

Mt− = V(0,t) + vtVXt−(t−).

To derive a stochastic differential equation for VXt(t) we could use partial in-
tegration on vtVXt(t) in (1.3). The martingale Mt must finally be identified to
obtain a useful differential equation.

Since vt is continuous and of bounded variation, integration by parts gives (see
e.g. Brémaud, 1981, p. 336)

d(vtVXt(t)) = d(vt)VXt(t) + vtdVXt(t)

= −δdt vtVXt(t) + vtdVXt(t). (1.4)

Using (1.4), (1.3) implies

dMt = dV(0,t] − δdt vtVXt(t) + vtdVXt(t)

=
∑
i

vtbi(t)Yi(t)dt+
∑
i 6=j

vtbij(t)dNij(t)

−δdt vtVXt(t) + vtdVXt(t). (1.5)
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Multiply by v−t on both sides in (1.5) to obtain

dVXt(t) = δdtVXt(t)−
∑
i

bi(t)Yi(t)dt−
∑
i 6=j

bij(t)dNij(t) + v−tdMt. (1.6)

To obtain a useful expression in (1.6), we need the following representation theo-
rem:

Theorem 1.1 Define the martingales Mij(t) by

dMij(t) = dNij(t)− λij(t)Yi(t)dt,

and introduce

Rij(t) = bij(t) + Vj(t)− Vi(t).

The martingale Mt = E(V0 | FNt ) has the representation

Mt = E[V0] +

∫ t

0

∑
i6=j

vsRij(s)dMij(s),

whenever∫ t

0

∑
i6=j

vs|Rij(s)|λij(s)Yi(s)ds <∞, a.s.

Proof: The technique of the proof is based on Brémaud (1981, pp. 64-68).
Relation (1.3) becomes

Mt =
∑
i

∫ t

0

vsbi(s)Yi(s)ds+
∑
i 6=j

∫ t

0

vsbij(s)dNij(s) + vtVXt(t).

Using XTn = Zn we also have

MTn+1
=

∑
i

∫ Tn+1

0

vsbi(s)Yi(s)ds+
∑
i 6=j

∫ Tn+1

0

vsbij(s)dNij(s)

+vTn+1VXTn+1
(Tn+1)

=

n+1∑
k=1

∫ Tk

Tk−1

vsbZk−1
(s)ds+

n∑
k=1

vTkbZk−1Zk(Tk)

+vTn+1bZnZn+1
(Tn+1) + vTn+1VZn+1

(Tn+1). (1.7)

To obtain the representation, we should find FNTn ⊗ B+-measurable mappings

(ω, t)→ f (n)(ω, t, j), from Ω×R+ into R such that
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MTn+1 = f (n)(ω, Tn+1 − Tn, Zn+1).

An obvious candidate is

f (n)(ω, t, j) =

n∑
k=1

∫ Tk

Tk−1

vsbZk−1
(s)ds+

∫ Tn+t

Tn

vsbZn(s)ds

+

n∑
k=1

vTkbZk−1Zk(Tk) + vTn+tbZnj(Tn + t)

+vTn+tVj(Tn + t). (1.8)

For Tn ≤ t < Tn+1, Mt is equal to

h(n)(t) =
∑
i

∫ t

0

vsbi(s)Yi(s)ds+
∑
i 6=j

∫ t

0

vsbij(s)dNij(s) + vtVZn(t)

=

n∑
k=1

∫ Tk

Tk−1

vsbZk−1
(s)ds+

∫ t

Tn

vsbZn(s)ds

+

n∑
k=1

vTkbZk−1Zk(Tk) + vtVZn(t). (1.9)

For Tn ≤ t < Tn+1 (between the jump times), (Brémaud, 1981, p. 66), we get

Mt −MTn = −
∫ t

Tn

∑
j 6=Zn

[f (n)(s− Tn, j)− h(n)(s)]λZnj(s)ds

= −
∫ t

Tn

∑
j 6=Zn

vs[bZnj(s) + Vj(s)− VZn(s)]λZnj(s)ds. (1.10)

By letting t↗ Tn+1 in (1.9) and then subtracting the limit from (1.7), we get at
the jump times

MTn+1
−MTn+1−

= vTn+1 [bZnZn+1
(Tn+1) + VZn+1

(Tn+1)− VZn(Tn+1−)]. (1.11)
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For t↗ Tn+1 in (1.10) we obtain

MTn+1− −MTn

= −
∫ Tn+1

Tn

∑
j 6=Zn

vs[bZnj(s) + Vj(s)− VZn(s)]λZnj(s)ds. (1.12)

Adding (1.11) and (1.12) gives

MTn+1 −MTn =

∫ Tn+1

Tn

∑
j 6=Zn

vs[bZnj(s) + Vj(s)− VZn(s−)]dMZnj(s)

=

∫ Tn+1

Tn

∑
j 6=Zn

vsRZnj(s)dMZnj(s), (1.13)

where (1.13) follows by the continuity of the state reserves. Combining (1.10) and
(1.13), we get for any t > 0

Mt − E[V0] = Mt −M0

=

∞∑
n=0

∫ t

0

∑
j 6=Zn

vsRZnj(s)I(Tn < s ≤ Tn+1)dMZnj(s)

=

∫ t

0

∑
i 6=j

vsRij(s)dMij(s), (1.14)

which ends the proof. 2

The martingale representation in (1.14) has also been derived by Ramlau-
Hansen (1988) by application of Thiele’s differential equation to a policy with
terms similar to (a) and (b). In this paper, the purpose of the representation is
quite the opposite, to obtain stochastic versions of Thiele’s differential equation.

Using the representation of Mt we can now state:

Theorem 1.2 Over the continuity points of bi(t), bij(t) and λij(t), the functions
t → Vi(t) are continuously differentiable, and satisfy the system of differential
equations:

dVi
dt

(t) = δ Vi(t)− bi(t)−
∑
j 6=i

[bij(t) + Vj(t)− Vi(t)]λij(t). (1.15)
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Proof: Using (1.6) and (1.14) we obtain (written in differential form)

dVXt(t) = δdt VXt(t)−
∑
i

bi(t)Yi(t)dt−
∑
i 6=j

bij(t)dNij(t)

+
∑
i 6=j

Rij(t)dMij(t).

Then over the points where Xt = Xt− = i, we can write

dVi(t) = δdt Vi(t)− bi(t)dt−
∑
j 6=i

[bij(t) + Vj(t)− Vi(t)]λij(t)dt,

because dNij(t) = 0, i 6= j, and the process is in state i, Yi(t) = 1. In this manner
we can identify the state reserves by solving the system (1.15). 2

Equation (1.15) leads to the well known deterministic variation of Thiele’s dif-
ferential equation for the Markov case, see Hoem (1969).

In the following a formal solution to (1.15) will be discussed and a formula for
numerical evaluation of the equivalence premium and the state reserves is derived.
This approach is chosen for the numerical evaluation in Example 2.1 below. The
following results can basically be seen in Barnett and Cameron (1985) or Davis
(1977).

Assume, that λij(t), bi(t) and bij(t) are all continuous functions on the interior
of an interval I of R+.

Define Wi(t) = vt Vi(t), i ∈ J , and obtain from (1.15)

dWi

dt
(t) = λi(t)Wi(t)−

∑
j 6=i

λij(t)Wj(t)

−vt[bi(t) +
∑
j 6=i

λij(t)bij(t)], t ∈ I, (1.16)

where λi(t) =
∑
j 6=i λij(t), i ∈ J .

Define the column vectors

W(t) = (W1(t), . . . ,Wn(t))′,

H(t) = (H1(t), . . . ,Hn(t))′,

where Hi(t) = −vt[bi(t) +
∑
j 6=i λij(t)bij(t)].

The system (1.16) can then be written

dW

dt
(t) = Λ(t)W(t) + H(t), t ∈ I, (1.17)
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where −Λ(t) = (λij(t))(i,j)∈J is the intensity matrix, with the understanding that
λii(t) = −

∑
j 6=i λij(t).

In the following it is assumed that (1.15) can be written on the form (1.17)
such that Λ(t) has elements that are functions of the intensities and such that
H(t) is independent of the state reserves, see e.g. Examples 1.1 and 2.1 below.

Normally, a system like (1.17) is solved by first considering the homogeneous

system obtained by putting H(t) ≡ 0. The unique solution Ŵ(t) to the homoge-

neous system with initial condition Ŵ(t0) = x0 for some fixed t0 ∈ I, is of the
form

Ŵ(t) = Φ̂(t0, t)x0, t ∈ I,

where Φ̂(t0, t) is a matrix called the fundamental matrix or the basic solution

chosen such that Φ̂(t0, t0) equals the unit matrix 1. The fundamental matrix can
also be identified as the limit of the sequence of the matrix functions

Φ̂k(t0, t) = 1 +

∫ t

t0

Λ(u1)du1 +

∫ t

t0

∫ u1

t0

Λ(u1)Λ(u2)du2du1

+ · · ·+
∫ t

t0

. . .

∫ uk−1

t0

Λ(u1) . . .Λ(uk)duk . . . du1,

where u0 = t, and the limit is w.r.t. to the matrix norm ‖A‖ = max1≤i≤p
∑p
i=1 |aij |,

defined for an p× p matrix A = (aij). Thus

Φ̂(t0, t) = 1 +

∞∑
k=1

∫ t

t0

. . .

∫ uk−1

t0

Λ(u1) . . .Λ(uk)duk . . . du1. (1.18)

By (1.18) we in particular obtain

dΦ̂

dt
(s, t) = Λ(t)Φ̂(s, t), s, t ∈ I, (1.19)

dΦ̂

ds
(s, t) = −Φ̂(s, t)Λ(s), s, t ∈ I. (1.20)

The following Theorem is needed, (Davis, 1977, p. 105, or Barnett and Cameron,
1985, pp. 76-77).

Theorem 1.3 The fundamental matrix Φ̂(s, t) with Φ̂(t, t) = 1, ∀t ∈ I, is regular
∀ s, t ∈ I, and its inverse fulfills the system of differential equation

dΦ∗

dt
(s, t) = −Φ∗(s, t)Λ(t), (1.21)
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and Φ∗ satisfies

Φ∗(s, t) = Φ∗(s, u)Φ∗(u, t), ∀ s, t, u ∈ I. (1.22)

By (1.20) and (1.21) we immediately get the relation

Φ̂−1(s, t) = Φ̂(t, s) ,∀ s, t ∈ I. (1.23)

If −Λ is the intensity matrix, then (1.21) is the Kolmogorov forward differential
equations, which gives for s ≤ t that

Φ̂−1(s, t) = P(s, t), (1.24)

where P is the matrix of the transition probabilities.

By e.g. multiplying with Φ−1(w, t) on both sides in (1.17) and first using
(1.21), (1.23) and finally (1.22), we get that the solution to (1.17) with initial
condition W(w) = vw a, w ≤ ∞, is given by

W(t) = vw Φ̂(w, t)a− Φ̂(w, t)

∫ w

t

Φ̂−1(w, τ)H(τ)dτ

= vw Φ̂−1(t, w)a− Φ̂−1(t, w)

∫ w

t

Φ̂(τ, w)H(τ)dτ

= vw Φ̂−1(t, w)a−
∫ w

t

Φ̂−1(t, τ)H(τ)dτ. (1.25)

In the case where −Λ is the intensity matrix we get by (1.24) that Φ̂−1(t, τ) in
(1.25) equals P(t, τ), and (1.25) could also in this case be obtained by a direct
prospective argument for the state reserves.

Thus, the problem of evaluating the state reserves amounts to evaluating the
matrix Φ̂−1, which normally must be done numerically, and then evaluating (1.25)

numerically. Since Φ̂−1 has the multiplicative property (1.22), we can e.g. use

product integral method to evaluate Φ̂−1, see [21] and Example 2.1. Alterna-
tively, we can simply use classical methods for solving the homogeneous system
(1.21). The equivalence premium is found from the equation V1(0) = 0.

Example 1.1. The disability model.

14
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The policy is described by the following terms: The insurance period is n
years and premium is paid continuously with constant rate P for a period of at
most m years, m < n, as long as the insured is in state 1. An annuity is paid
continuously to the insured with constant rate b as long as the insured is in state
2. A benefit amount S, the sum insured, is paid immediately upon death within
time n. Furthermore, the reserve V1(t) is paid to the insured if a transition from
state 1 occurs at time t. Thus, b12(t) = V1(t), b13(t) = S + V1(t), b23(t) = S and
b21(t) = 0.

Since V3 ≡ 0, it remains to find the equivalence premium and the state reserves,
Vi(t), i = 1, 2, with initial condition Vi(n) = 0.

Under the assumptions above, (1.16) becomes

dW1

dt
(t) = −λ12(t)W2(t) + vt[P − S λ13(t)],

dW2

dt
(t) = λ2(t)W2(t)− λ21(t)W1(t)− vt[S λ23(t) + b],

with the interpretation P = 0 for t ≥ m. This leads to the expression in (1.17)
with

Λ(t) =

(
0 −λ12(t)

−λ21(t) λ2(t)

)
,

and

H(t) = −vt(S λ13(t)− P, S λ23(t) + b)′.

15



With Φ̂−1 = (ψij) and a = 0 formula (1.25) gives

V1(t) =

∫ n

t

vτ−t[ψ11(t, τ)S λ13(τ) + ψ12(t, τ)(S λ23(τ) + b)]dτ

−P
∫ m

t

vτ−tψ11(t, τ)dτ,

V2(t) =

∫ n

t

vτ−t[ψ21(t, τ)S λ13(τ) + ψ22(t, τ)(S λ23(τ) + b)]dτ

−P
∫ m

t

vτ−tψ21(t, τ)dτ.

The equivalence premium is determined by V1(0) = 0, which gives

P =

∫ n
0
vτ [ψ12(0, τ)(Sλ23(τ) + b) + ψ11(0, τ)S λ13(τ)]dτ∫m

0
vτψ11(0, τ)dτ

. 2

3.2 More complex models

The policy is still assumed to be described by a jump process Xt with finite
state space J = {1, . . . , J}. We will consider examples such that the conditional
expectation in (1.2) may depend on more information than the current state of
Xt.

First we will study the immediate generalization of the case in Section 1, namely
where a duration effect is put into the intensities and the payments: For each t,
let Ut ∈ R+ measure the time spent in the current state Xt. We then obtain that
X̃t = {Xt, Ut} becomes a Markov process with infinite state space J ×R+.

Consider now a policy with the same terms as in Section 1, but with payments
bi(t, Ut) and bij(t, Ut−) allowed to depend on the duration Ut in the visiting state.
It is assumed that the mappings (t, u)→ bi(t, u) and (t, u)→ bij(t, u) from R+ ×
R+ into R, are Borel measurable. The force of interest is still assumed to be
constant, and the sequence (Tn, Zn)n≥0 has also the same meaning as in Section
1. The intensity process is now determined by

P (dNij(t) = 1 | FNt−) = λij(t, Ut)Yi(t)dt, i 6= j,

where (t, u)→ λij(t, u) are deterministic functions.
The stochastic surplus V0 over [0, T ], and V(0,t], V(t,T ] are defined in the same

way as in Section 1, simply by using bi(t, Ut) and bij(t, Ut−) instead of bi(t) and
bij(t) when the process is in state i at time t.

Similar to (1.1) we can write

V0 =
∑
i

∫ T

0

vsbi(s, Us)Yi(s)ds+
∑
i 6=j

∫ T

0

vsbij(s, Us−)dNij(s).
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Similar to (1.3) we get

Mt = V(0,t] + vtVX̃t(t), (2.1)

where Mt = E(V0 | FNt ). With the same arguments as in Section 1 we obtain
similar to (1.6)

dVX̃t(t) = δdtVX̃t(t)−
∑
i

bi(t, Ut)Yi(t)dt

−
∑
i 6=j

bij(t, Ut−)dNij(t) + v−tdMt. (2.2)

The representation theorem for Mt becomes:

Theorem 2.1 Define martingales Mij(t) by

dMij(t) = dNij(t)− λij(t, Ut)Yi(t)dt,

and introduce

Rij(t, Ut) = bij(t, Ut) + V(j,0)(t)− V(i,Ut)(t).

The martingale Mt = E(V0 | FNt ) has the representation

Mt = E[V0] +

∫ t

0

∑
i6=j

vsRij(s, Us−)dMij(s),

whenever∫ t

0

∑
i6=j

vs|Rij(s, Us)|λij(s, Us)Yi(s)ds <∞, a.s.

Proof: The technique is similar to the one used in Theorem 1.1.

Using UTn = 0, ∀n ≥ 0, we obtain

MTn+1 =

n+1∑
k=1

∫ Tk

Tk−1

vsbZk−1
(s, s− Tk−1)ds+

n∑
k=1

vTkbZk−1Zk(Tk, Tk − Tk−1)

+vTn+1bZnZn+1(Tn+1, Tn+1 − Tn) + vTn+1V(Zn+1,0)(Tn+1).

17



The FNTn ⊗ B+-measurable mappings (ω, t)→ f (n)(ω, t, j) become

f (n)(ω, t, j) =

n∑
k=1

∫ Tk

Tk−1

vsbZk−1
(s, s− Tk−1)ds+

∫ Tn+t

Tn

vsbZn(s, s− Tn)ds

+

n∑
k=1

vTkbZk−1Zk(Tk, Tk − Tk−1) + vTn+tbZnj(Tn + t, t)

+vTn+tV(j,0)(Tn + t).

The expression (1.9) for Mt on Tn ≤ t < Tn+1 now modifies to

h(n)(t) =

n∑
k=1

∫ Tk

Tk−1

vsbZk−1
(s, s− Tk−1)ds+

∫ t

Tn

vsbZn(s, s− Tn)ds

+

n∑
k=1

vTkbZk−1Zk(Tk, Tk − Tk−1) + vtV(Zn,t−Tn)(t),

and the analogue of (1.14) is

Mt − E[V0] = Mt −M0

=

∞∑
n=0

∫ t

0

∑
j 6=Zn

vs[bZnj(s, s− Tn) + V(j,0)(s)− V(Zn,s−Tn)(s)]

×I(Tn < s ≤ Tn+1)(dNZnj(s)− λZnj(s, s− Tn)ds)

=

∫ t

0

∑
i6=j

vsRij(s, Us−)dMij(s), (2.3)

which ends the proof. 2

We obtain the following theorem:

Theorem 2.2 Over the continuity points of bi(t, u), bij(t, u) and λij(t, u), the
functions t → Vi(t, Ut) are continuously differentiable, and satisfy the system of
differential equations:

dV(i,Ut)

dt
(t) = δ V(i,Ut)(t)− bi(t, Ut)

−
∑
j 6=i

[bij(t, Ut) + V(j,0)(t)− V(i,Ut)(t)]λij(t, Ut). (2.4)

18



Proof: Follows the same line as the proof of Theorem 1.2. Namely, using (2.2)
and (2.3), the stochastic differential equation becomes

dVX̃t(t) = δdtVX̃t(t)−
∑
i

bi(t, Ut)Yi(t)dt−
∑
i∈J

∑
j 6=i

bij(t, Ut−)dNij(t)

+
∑
i 6=j

Rij(t, Ut−)dMij(t).

Then over points where Xt = Xt− = i, we obtain

dV(i,Ut)(t) = δdtV(i,Ut)(t)− bi(t, Ut)dt

−
∑
j 6=i

[bij(t, Ut) + V(j,0)(t)− V(i,Ut)(t)]λij(t, Ut)dt,

since dNij(t) = 0, for j 6= i, and Yi(t) = 1, and Ut− = Ut. 2

If we assume that V(i,u)(t) have continuous partial derivatives for all i ∈ J ,

denoted
∂V(i,u)

∂t (t),
∂V(i,u)

∂u (t), respectively, we obtain by definition

dV(i,Ut)

dt
(t) =

∂V(i,u)

∂t
(t) +

∂V(i,u)

∂u
(t),

since dUt = dt between the jums of Xt. Then (2.4) can also be cast as the partial
differential equations

∂V(i,u)

∂t
(t) +

∂V(i,u)

∂u
(t) = δV(i,u)(t)− bi(t, u)

−
∑
j 6=i

[bij(t, u) + V(j,0)(t)− V(i,u)(t)]λij(t, u).

We do not seem to gain much by introducing the partial derivatives, but what
suffices is the system in (2.4) consisting of first order differential eqautions. This
system is far more complicated than (1.15), since it involves the state reserves with
duration zero. At least we can establish integral equations for V(i,u)(t), u ≥ 0:
Using the initial condition V(i,u)(T ) = ai ∈ R+, i ∈ J , for all u, we obtain by
(2.4)

V(i,Ut)(t) =

∫ T

t

e−
∫ τ
t

(δ+λi(s,Us))ds

×{bi(τ, Uτ ) +
∑
j 6=i

[bij(τ, Uτ ) + V(j,0)(τ)]λij(τ, Uτ )}dτ

+ai e
−

∫ T
t

(δ+λi(s,Us))ds. (2.5)
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Since Uτ = Ut + τ − t in (2.5), for τ ≥ t the right hand side only depends on Ut.
In particular we get for Ut = 0,

V(i,0)(t) =

∫ T

t

e−
∫ τ
t

(δ+λi(s,s−t))ds

×{bi(τ, τ − t) +
∑
j 6=i

[bij(τ, τ − t) + V(j,0)(τ)]λij(τ, τ − t)}dτ

+ai e
−

∫ T
t

(δ+λi(s,s−t))ds. (2.6)

The equations (2.5) and (2.6) could look differently if the amounts bij were depen-
dent of the state reserves. If all the state reserves V(i,0)(t) have been evaluated, we
can solve V(i,u)(t) from (2.5) for any fixed duration u. From (2.6) we can evaluate
V(i,0)(t), but the terms involved seem to be complex functions in t, and an ordi-
nary set of differential equations as (1.17) seems in general hard to establish. The
integral equation system is of Volterra type, and must be solved numerically, see
e.g. Berezin and Zhidkov (1965) or Baker (1977), but such numerical problems will
not be discussed here. A way to obtain an ordinary set of differential equations
in (2.6), is to assume a Markov structure on the intensities as in Section 1. An
example of this could be the model in Example 1.1 combined with a qualifying
period for disabled lives. This duration effect then makes the reserve for the dis-
abled dependent of the past. The following example illustrates this.

Example 2.1. Qualifying period for disabled lives. Consider a policy of period
n with terms as in Example 1.1, but modified such that there is a qualifying pe-
riod of one year before receiving benefits as disabled. This gives with the model
decription in Example 1.1 that b2(t, Ut) = b I(Ut ≥ 1). The premium period is set
to m = n−5. The reserve for active state V1(t), does not depend on the duration,
and the differential equations become

dW1

dt
(t) = −λ12(t)W(2,0)(t) + vt[P − S λ13(t)],

dW(2,Ut)

dt
(t) = λ2(t)W(2,Ut)(t)− λ21(t)W1(t)− vt[S λ23(t) + b I(Ut ≥ 1)].

Thus with initial condition V1(n) = V(2,u)(n) = 0, for all u, we get

W(2,Ut)(t) =

∫ n

t

e−
∫ τ
t
λ2(s)ds{λ21(τ)W1(τ) + vτ [Sλ23(τ) + b I(Uτ ≥ 1)]}dτ.

For Ut = u ≥ 1, W(2,u)(t) is independent of u, but for 0 ≤ u ≤ 1

W(2,u)(t) =

∫ n

t

e−
∫ τ
t
λ2(s)ds{λ21(τ)W1(τ) + vτSλ23(τ)}dτ

+b

∫ n

t+1−u
vτe−

∫ τ
t
λ2(s))dsdτ, (2.7)
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where

b

∫ n

t+1−u
vτe−

∫ τ
t
λ2(s)dsdτ = 0,

for t ≥ n−1+u. Defining b2(t) = b e−
∫ t+1
t

(δ+λ2(s))ds and differentiating W(2,0)(t),
we get

dW(2,0)

dt
(t) = λ2(t)W(2,0)(t)− λ21(t)W1(t)− vt[S λ23(t) + b2(t)]

where b2(t) = 0, for t ≥ n− 1.

So, we arrive at a system of differential equations for (W1,W(2,0)) similar to
the system in Example 1.1, now with

H(t) = −vt(S λ13(t)− P, S λ23(t) + b2(t))′.

Let Φ̂ be the basic solution to this system. Then with Φ̂−1 = (ψij) we get

V1(t) =

∫ n

t

vτ−t[ψ11(t, τ)Sλ13(τ) + ψ12(t, τ)Sλ23(τ)]dτ

+

∫ n−1

t

vτ−tψ12(t, τ)b2(τ)dτ − P
∫ m

t

vτ−tψ11(t, τ)dτ,

V(2,0)(t) =

∫ n

t

vτ−t[ψ21(t, τ)Sλ13(τ) + ψ22(t, τ)Sλ23(τ)]dτ

+

∫ n−1

t

vτ−tψ22(t, τ)b2(τ)dτ − P
∫ m

t

vτ−tψ21(t, τ)dτ,

where the integrals
∫ n−1

t
and

∫m
t

are zero for t ≥ n − 1 and t ≥ m, respectively.
The equivalence premium is found as the solution to V1(0) = 0.

For the numerical evaluation of Φ̂−1(s, t) let s = t0 < t1 < · · · < tn = t be a
partition of the interval [s, t] with division norm ρ = max1≤k≤n{(tk − tk−1)}. Put
∆k = tk − tk−1, k = 1, . . . , n and let Λ′ be the matrix with elements that are the
derivatives of the elements in Λ. Because of the multiplicative structure on Φ̂−1

a second order Taylor expansion of the elements in Φ̂−1 gives that

n∏
k=1

[1−Λ(tk−1)∆k +
(
Λ2(tk−1)−Λ′(tk−1)

) ∆2
k

2
]

converges uniformly to Φ̂−1(s, t) for ρ→ 0 with convergence rate of order ρ2. This

Taylor expansion is used as an approximation to Φ̂−1.
Then V1 and V(2,0) are evaluated by the trapezoidal formula for integrals, and

finally V(2,u) is evaluated by (2.7), also by the trapezoidal formula.
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The following intensities have been used

λ12(t) = λ21(t) = 0.0004 + 100.06t−5.46,

λ13(t) = λ23(t) = 0.0005 + 100.038t−4.12.

The intensities λ12(t), λ13(t) and λ23(t) above are used by Danish insurance com-
panies today. To emphasize the necessity of a numerical procedure for the pair
(W1,W(2,0)), a recovery intensity is used and, merely to illustrate chosen equal to
λ12(t). The tables below show some results, where η denotes the annual interest
rate.
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Table 1: S = 3000, b = 1000, η = 4.5% .

x = 40 x = 50
n = 25 n = 15

P 63.8 104.8

V1(5) 183.9 217.4
V(2,0)(5) 11325.2 6605.0
V(2,1/4)(5) 11564.3 6841.8

V1(10) 331.8 368.7
V(2,0)(10) 9183.7 3407.1
V(2,1/2)(10) 9663.6 3879.9

V1(15) 401.4 −
V(2,0)(15) 6608.9 −
V(2,3/4)(15) 7330.6 −

Table 2: S = 3000, b = 1000, η = 10% .

x = 40 x = 50
n = 25 n = 15

P 43.4 82.5

V1(5) 127.2 177.8
V(2,0)(5) 7494.4 5152.5
V(2,1/4)(5) 7723.0 5378.9

V1(10) 252.7 318.0
V(2,0)(10) 6558.5 2946.9
V(2,1/2)(10) 7020.2 3401.9

V1(15) 333.7 −
V(2,0)(15) 5155.7 −
V(2,3/4)(15) 5854.7 −
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Table 3: S = 0, b = 1000, η = 10% .

x = 40 x = 50
n = 25 n = 15

P 21.6 38.7

V1(5) 59.2 57.7
V(2,0)(5) 7284.1 4893.1
V(2,1/4)(5) 7512.7 5119.4

V1(10) 109.8 89.9
V(2,0)(10) 6311.4 2736.8
V(2,1/2)(10) 6773.2 3191.9

V1(15) 125.5 −
V(2,0)(15) 4894.4 −
V(2,3/4)(15) 5593.4 −

To emphasize the variety of models that can be incorporated with the technique
described here, we will as a final illustration extend the model above by allowing
the intensities of Xt and the payment functions to depend on Nt the number of
jumps occurred over the period [0, t]. More precisely, we assume that the total
surplus over [0, T ] is given by

V0 =
∑
i

∫ T

0

vsbi(s, Us, Ns)Yi(s)ds+
∑
i 6=j

∫ T

0

vsbij(s, Us−, Ns−)dNij(s),

and the intensities are determined by

P (dNij(t) = 1 | FNt−) = λij(t, Ut, Nt)Yi(t)dt, i 6= j,

where (t, u)→ λij(t, u, n) are deterministic functions. Similar to (2.1) we get

Mt = V(0,t] + vtVQt(t),

where Qt = {Xt, Ut, Nt}. The martingale Mt = E(V0 | FNt ) has now the represen-
tation

Mt = E[V0] +

∫ t

0

∑
i 6=j

vsRij(s, Us−, Ns−)dMij(s),

whenever∫ t

0

∑
i 6=j

vs|Rij(s, Us, Ns)|λij(s, Us, Ns)Yi(s)ds <∞, a.s.,
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where

dMij(t) = dNij(t)− λij(t, Ut, Nt)Yi(t)dt,

and

Rij(t, Ut, Nt) = bij(t, Ut, Nt) + V(j,0,Nt+1)(t)− V(i,Ut,Nt)(t).

The analogue of (2.4) will then read:

dV(i,Ut,n)

dt
(t) = δ V(i,Ut,n)(t)− bi(t, Ut, n)

−
∑
j 6=i

[bij(t, Ut, n) + V(j,0,n+1)(t)− V(i,Ut,n)(t)]λij(t, Ut, n).

We see that we obtain an infinite system of equations, and we shall not pursue
how to treat this.
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Chapter 4

The change of variable
formula and applications

In this chapter, we will introduce some techniques which can be helpful for the
stochastic analysis of insurance models. The chapter is basically a revised version
of the ideas and applications studied in [22].

4.1 The change of variable formula

A real-valued, Ft-adapted cadlag process (Qt)t≥0 is a process of finite variation,
abbreviated FV, if the paths t→ Qt(ω) are of bounded variation over finite inter-
vals. An FV-process Qt can always be decomposed into the sum of its continuous
and discrete part as follows:

Qt = Q0 +Qct +
∑

0<s≤t

4Qs,

where Qct is the continuous part and 4Qt = Qt − Qt−. The sum is of course
well-defined since Qt has finite variation.

Theorem 1.1 (Change of variable formula) Let Qt = (Q
(1)
t , . . . , Q

(n)
t ) be an n-

tuple of FV-processes, and let g : Rn → R have continuous partial derivatives ∂g
∂qi

,

i = 1, . . . , n. Then (g(Qt))t≥0 is an FV-process and

g(Qt)− g(Q0) =

n∑
i=1

∫ t

0

∂g

∂qi
(Qs)dQ

(i) c
s +

∑
0<s≤t

{g(Qs)− g(Qs−)}. (1.1)

Let Yt = (Y
(1)
t , . . . , Y

(n)
t ) be an n-tuple of FV-processes, such that Yt jumps

only at times T1 < T2 < . . . of a point process Nt. We associate a marked point
process Nt(A), A ∈ Rn, by letting the marks represent the increments of Yt at
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the jumps. Since Yt jumps only at the jump times of Nt, we can for any Borel
function h : Rn → R write∑

0<s≤t

{h(Ys)− h(Ys−)} =

∫ t

0

∫
Rn
{h(Ys− + y)− h(Ys−)}dNs(dy). (1.2)

We have simply decomposed the sum according to the values of the increments of
Yt at the jumps.

Theorem 1.2 Let Yt = (Y
(1)
t , . . . , Y

(n)
t ) be an n-tuple of FV-processes satisfying

(1.2) such that Nt(A) admits an Ft-intensity λt(A), and let g : Rn → R be as in
Theorem 1.1. Then the process

Mt = g(Yt)− g(Y0)−
n∑
i=1

∫ t

0

∂g

∂yi
(Ys)dY

(i) c
s

−
∫ t

0

∫
Rn
{g(Ys + y)− g(Ys)}λs(dy)ds, (1.3)

is a zero mean Ft-martingale whenever

E

[∫ t

0

∫
Rn
|g(Ys + y)− g(Ys)|λs(dy)ds

]
<∞.

Proof: Using (1.1) and (1.2), it is obvious that

Mt =

∫ t

0

∫
Rn
{g(Ys− + y)− g(Ys−)}(dNs(dy)− λs(dy)ds), (1.4)

which is a zero mean Ft-martingale since the integrand is predictable. Thus, in
particular, the martingale is obtained by an integral representation. 2

Consequently:

Theorem 1.3 Assume that Yt and g are as described in Theorem 1.2, but with
the modification that g(Yt) is an Ft-martingale. Then

n∑
i=1

∫ t

0

∂g

∂yi
(Yt)dY

(i) c
t +

∫ t

0

∫
Rn
{g(Ys + y)− g(Ys)}λs(dy)ds = 0. (1.5)

Proof: By (1.3) we obtain that

g(Yt)− g(Y0)−Mt =

n∑
i=1

∫ t

0

∂g

∂yi
(Ys)dY

(i) c
s

+

∫ t

0

∫
Rn
{g(Ys + y)− g(Ys)}λs(dy)ds, (1.6)
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becomes a zero mean martingale and, therefore,

E

[
n∑
i=1

∫ t

s

∂g

∂yi
(Yu)dY (i) c

u +

∫ t

s

∫
Rn
{g(Yu + y)− g(Yu)}λu(dy)du | FNs

]
= 0, ∀ s < t.

Since the expectation concerns an FV-process with continuous paths, the martin-
gale is constant and hence zero, see e.g. Chung and Williams (1990, pp. 87-88).
2

4.2 Some examples

Example 2.1. Thiele’s differential equation. We will illustrate, how we can use
Theorem 1.3 to arrive at the martingale representations presented in Chapter 3,
which was the tool for obtaining the differential equations for the state reserves.
We will only consider the pure Markov model, and below we make use of the
notation of Chapter 3.

Assume that VXt(t) is an FV-process, and decompose vtVXt(t) into its contin-
uous and discrete part, which reads

vtVXt(t) = VX0
(0) + vtV cXt(t) +

∑
0<s≤t

vs{VXs(s)− VXs−(s−)},

where V cXt(t) is the continuous part of VXt(t). By assuming that VXt(t) jumps
only at the jump times of Xt, we can similar to (1.2) write

∑
0<s≤t

vs{VXs(s)− VXs−(s−)} =
∑
i 6=j

∫ t

0

vs{Vj(s)− Vi(s)}dNij(s).
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For simplicity assume that VX0
(0) = 0. Relation (1.3) in Chapter 3 then reads

Mt = V(0,t] + vtVXt(t)

= V(0,t] + vtV cXt(t) +
∑
i 6=j

∫ t

0

vs{Vj(s)− Vi(s)}dNij(s)

=
∑
i

∫ t

0

vsbi(s)Yi(s)ds+ vtV cXt(t)

+
∑
i 6=j

∫ t

0

vs{bij(s) + Vj(s)− Vi(s)}dNij(s)

=
∑
i

∫ t

0

vsbi(s)Yi(s)ds+ vtV cXt(t)

+
∑
i 6=j

∫ t

0

vs{bij(s) + Vj(s)− Vi(s)}λij(s)Yi(s)ds+M∗t ,

where

M∗t =
∑
i 6=j

∫ t

0

vs{bij(s) + Vj(s)− Vi(s)}(dNij(s)− λij(s)Yi(s)ds),

is a zero mean martingale under the same assumptions as in Theorem 1.1, Chapter
3. Thus

Mt −M∗t =
∑
i

∫ t

0

vsbi(s)Yi(s)ds+ vtV cXt(t)

+
∑
i 6=j

∫ t

0

vs{bij(s) + Vj(s)− Vi(s)}λij(s)Yi(s)ds

becomes a zero mean martingale, and is obviously continuous and of bounded
variation, and hence identically zero. We have then obtained the representation
of Mt in Theorem 1.1, Chapter 3. 2

Example 2.2. The distribution of jump processes. We will study how to estab-
lish an integro-differential equation for the function

F (t, x) = P (X
(f)
t ≤ x), x ∈ R.

The technique is only applicable when Nt(A) are Poisson processes, implying that

the intensity is deterministic. The idea is to consider the process t→ I(X
(f)
t ≤ x),
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which is cadlag and purely discrete. Using (1.1) and (1.2) we obtain

I(X
(f)
t ≤ x)− I(x ≥ 0)

=
∑

0<s≤t

{I(X(f)
s ≤ x)− I(X

(f)
s− ≤ x)}

=

∫ t

0

∫
Z
{I(X

(f)
s− ≤ x− f(s, z))− I(X

(f)
s− ≤ x)}dNs(dz).

Taking the mean and using that the intensity is deterministic, we get

F (t, x)− I(x ≥ 0)

= E

[∫ t

0

∫
Z
{I(X

(f)
s− ≤ x− f(s, z))− I(X

(f)
s− ≤ x)}dNs(dz)

]

= E

[∫ t

0

∫
Z
{I(X

(f)
s− ≤ x− f(s, z))− I(X

(f)
s− ≤ x)}λs(dz)ds

]

=

∫ t

0

∫
Z
{F (s, x− f(s, z))− F (s, x)}λsGs(dz)ds.

So, over the continuity points of λt(A) and f(t, z), we obtain by differentiation the
following integro-differential equation:

dF

dt
(t, x) = −λtF (t, x) + λt

∫
Z
F (t, x− f(t, z))Gt(dz),

where F satisfies the initial condition F (0, x) = I(x ≥ 0). If f takes only pos-
itive values, the domain of integration is reduced to {z|x ≥ f(t, z)}, which is
convenient in a numerical implementation. We refer to [25] for some numerical
implementations and for a more refined treatment on the subject based on a mar-
tingale approach. 2

Example 2.3. Moments of jump processes. We assume that the Nt(A) are Poisson
processes, and will obtain expressions for the central moments

µ
(k)
t = E(X

(f)
t − E[X

(f)
t ])k, k = 2, 3, 4.

Assume in the following that∫ t

0

∫
Z
|fk(s, z)|λs(dz)ds <∞, k = 2, 3, 4.

By the definition of intensity, we immediately obtain that µt = E[X
(f)
t ] is given

as

µt =

∫ t

0

∫
Z
f(s, z)λs(dz).
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This is also a natural consequence of the martingale property (0.6) in Chapter 2.
It should therefore be well-known that

µ
(2)
t =

∫ t

0

∫
Z
f2(s, z)λs(dz)ds. (2.7)

We will also show this in light of the change of variable formula and use this
technique to express the third and fourth order central moments. Define

Yt = X
(f)
t − E[X

(f)
t ],

which obviously is an FV-process with Y ct = −E[X
(f)
t ]. Using (1.1) with g(y) = y2,

we obtain

Y 2
t = −2

∫ t

0

Ys

∫
Z
f(s, z)λs(dz)ds+

∑
0<s≤t

{Y 2
s − Y 2

s−}.

Furthermore,

Y 2
t − Y 2

t− = (Yt− +

∫
Z
f(t, z)dNt(dz))

2 − Y 2
t−

= 2Yt−

∫
Z
f(t, z)dNt(dz) +

∫
Z
f2(t, z)dNt(dz).

We gather

Y 2
t = 2

∫ t

0

Ys−

∫
Z
f(s, z)(dNs(dz)− λs(dz)ds)

+

∫ t

0

∫
Z
f2(s, z)dNs(dz),

and finally obtain (2.7) by taking the mean. We proceed similarly for the third
and fourth order central moment:

Y 3
t = −3

∫ t

0

Y 2
s

∫
Z
f(s, z)λs(dz)ds+

∑
0<s≤t

{Y 3
s − Y 3

s−}.

As above we can write

Y 3
t − Y 3

t− = (Yt− +

∫
Z
f(t, z)dNt(dz))

3 − Y 3
t−

= 3Yt−

∫
Z
f2(t, z)dNt(dz) + 3Y 2

t−

∫
Z
f(t, z)dNt(dz)

+

∫
Z
f3(t, z)dNt(dz),
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and obtain

Y 3
t = 3

∫ t

0

Y 2
s−

∫
Z
f(s, z)(dNs(dz)− λs(dz)ds)

+3

∫ t

0

Ys−

∫
Z
f2(s, z)dNs(dz) +

∫ t

0

∫
Z
f3(s, z)dNs(dz).

The first term has mean zero (it is a zero mean martingale), and so has also the
second, since λt(A) is deterministic and E[Yt] = 0. We conclude that

µ
(3)
t =

∫ t

0

∫
Z
f3(s, z)λs(dz)ds. (2.8)

Finally,

Y 4
t = −4

∫ t

0

Y 3
s

∫
Z
f(s, z)λs(dz)ds+

∑
0<s≤t

{Y 4
s − Y 4

s−},

and

Y 4
t − Y 4

t− = (Yt− +

∫
Z
f(t, z)dNt(dz))

4 − Y 4
t−

= 4Yt−

∫
Z
f3(t, z)dNt(dz) + 4Y 3

t−

∫
Z
f(t, z)dNt(dz)

+6Y 2
t−

∫
Z
f2(t, z)dNt(dz) +

∫
Z
f4(t, z)dNt(dz).

Using arguments similar to those leading to (2.8), we arrive at

µ
(4)
t =

∫ t

0

∫
Z
f4(s, z)λs(dz)ds+ 6

∫ t

0

µ(2)
s

∫
Z
f2(s, z)λs(dz)ds (2.9)

=

∫ t

0

∫
Z
f4(s, z)λs(dz)ds+ 6

∫ t

0

µ(2)
s dµ(2)

s

=

∫ t

0

∫
Z
f4(s, z)λs(dz)ds+ 3(µ

(2)
t )2. (2.10)

For instance, we can use these expressions to evaluate higher order moments
of the discounted risk process

X̃t =

Nt∑
i=1

e−δTiZi, Zi ∈ R,
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where δ is the constant force of interest. 2

Example 2.4. Exponential martingales. We will derive some well-known exponen-
tial martingales, which we will use in connection with diffusion approximations in
Chapter 6. We will prove that the process

M
(f)
t = eX

(f)
t −

∫ t
0

∫
Z(ef(s,z)−1)λs(dz)ds, (2.11)

is an Ft-martingale with mean one whenever

E[eX
(f)
t −

∫ t
0

∫
Z(ef(s,z)−1)λs(dz)ds] <∞.

Using the change of variable formula with

Yt = X
(f)
t −

∫ t

0

∫
Z

(ef(s,z) − 1)λs(dz)ds,

and g(y) = ey, we obtain

M
(f)
t = 1−

∫ t

0

eYs
∫
Z

(ef(s,z) − 1)λs(dz)ds+
∑

0<s≤t

{eYs − eYs−}

= 1−
∫ t

0

eYs
∫
Z

(ef(s,z) − 1)λs(dz)ds

+

∫ t

0

∫
Z
eYs−(ef(s,z) − 1)dNs(dz)

=

∫ t

0

∫
Z
eYs−(ef(s,z) − 1)(dNs(dz)− λs(dz)ds),

which is an Ft-martingale since the integrand is Ft-predictable.

Similarly, we can arrive at the complex valued martingale

M
(f)
t = eiuX

(f)
t −

∫ t
0

∫
Z(eiuf(s,z)−1)λs(dz)ds,

where i is the imaginary unit (i2 = −1) and u ∈ R. The process

φt(u) = e
∫ t
0

∫
R+

(eiuf(s,z)−1)λs(dz)ds

is called the characteristic function of X
(f)
t and characterizes its distribution. As-

sume e.g. that λt(A) is deterministic. Then X
(f)
t has independent increments

since the martingale property yields

E[eiu(X
(f)
t −X

(f)
s ) | FNs ] = e

∫ t
s

∫
Z(eiuf(τ,z)−1)λτ (dz)dτ .

See e.g. Delbaen and Haezendonck (1987) for a special case. 2
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Chapter 5

Stochastic differential
equations for ruin
probabilities

In this chapter we will focus on differential equations for ruin probabilities. The
aim is to understand how one can establish differential equations for quite general
models and furthermore, how these generalizations are related to the cases in the
references listed. The approach introduced here seems to be new.

We start by defining a stochastic process of conditional ruin probabilities where
time varies over an interval [0, T ). More precisely, we will be interested in e.g.
the probability of ruin over (t, T ) given the reserve at time t. These conditional
probabilities lead to a process, and the key point is that this process, stopped
at the time of ruin, becomes a martingale. Using this property, we can obtain
(stochastic) differential equations for the process of conditional ruin probabilities,
by use of the martingale representation theorem.

Section 1 treats the Markov case. For simplicity, we base the mathematical
steps on the change of variable formula, but as in Chapter 3, it is the representation
of the martingale which is essential to arrive at the differential equations, see the
comments following (1.17). Also we give some numerical examples to obtain the
probability of ruin over a finite time period.

In Section 2 we proceed to more complex models, where e.g. the premium or
the claims intensity can fluctuate in such a way that the risk model is no longer
Markov, but such that Markovization is still possible. First we study a case where
the intensity depends on the history only via the number of jumps and, second,
we study the risk model in a Markovian environment.
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5.1 The risk reserve as a Markov process

5.1.1 The martingale approach

We start with the following definition of the risk reserve at time t:

Rt = R0 +

∫ t

0

b(s,Rs)ds−
∫ t

0

∫
Z
f(s, z)dNs(dz). (1.1)

The mapping (t, r) → b(t, r) from R+ ×R to R is assumed to be piecewise con-
tinuous in t and r, and could represent premium income or annuity payments to
the insured. The risk reserve is a cadlag process (right continuous paths with left
limits), and it is required throughout that Rt is Ft-measurable.

The time of ruin is defined as

τ = inf{t ≥ 0 |Rt < 0},

which is an Ft-stopping time, that is, {τ ≤ t} ∈ Ft for all t ≥ 0. Since we
allow b(t, r) to take negative values, ruin is not only caused by a jump. Ruin
between jumps could e.g. happen if the company pays out pensions, or if it invests
its reserve and gets a negative outcome of its investments. To prevent technical
details from obscuring the presentation, we omit the possibility of payments at
discrete times such as for instance lump sum payments governed by the size of Rt.

We assume that Nt(A) is a Poisson process for each A, and the interpretation
of Gt in (0.4), Chapter 2, becomes then∫

A

Gt(dz) = P (Zn ∈ A |Tn = t). ∀n.

Then, since b(t, Rt) depends on the history only through Rt, the reserve Rt be-
comes an Ft-Markov process (it need not have independent increments), that is
σ(Rs, s ≥ t) and Ft are independent given Rt. Also, we could allow f to depend
on Rt−, since this would not destroy the Markov property of Rt and the mathe-
matical steps leading to Theorem 1.1 below. For notational convenience we omit
this.

For a fixed T ≤ ∞ we write

I(τ < T ) = I(τ ≤ t) + I(t < τ < T )

= I(τ ≤ t) + I(τ > t)I( inf
t≤s<T

Rs < 0)

= I(τ < t) + I(τ ≥ t)I( inf
t≤s<T

Rs < 0). (1.2)

Defining Mt = P (τ < T | Ft) = E(I(τ < T ) | Ft), taking conditional expectation

35



w.r.t. Ft in (1.2), and using the Markov property, we get

Mt = I(τ ≤ t) + P (t < τ < T | Ft)

= I(τ ≤ t) + I(τ > t)P ( inf
t≤s<T

Rs < 0 | Ft)

= I(τ ≤ t) + I(τ > t)Ψ(t, Rt)

= I(τ < t) + I(τ ≥ t)Ψ(t, Rt), (1.3)

where the function Ψ : R+ ×R → [0, 1] is

Ψ(t, r) = P ( inf
t≤s<T

Rs < 0 |Rt = r), (1.4)

the probability of ruin after time t with reserve r at time t. Also, we get

Ψ(t, r) = 1, r < 0. (1.5)

If we assume that Ψ(t, r) is continuous in t, r, we obtain by (1.3) that Mt is right-
continuous with left-hand limits given by

Mt− = I(τ < t) + I(τ ≥ t)Ψ(t, Rt−). (1.6)

In the sequel, we chose the version of Ψ such that Mt is cadlag.

Inserting t ∧ τ in (1.3), we get

Mt∧τ = Ψ(t ∧ τ,Rt∧τ ), t ∈ [0, T ), (1.7)

which in particular gives that Ψ(t∧τ,Rt∧τ ) is a (uniformly integrable) martingale,
and using this idea we will derive a differential equation for the non-ruin probability

Φ(t, Rt) = 1−Ψ(t, Rt).

As outlined in the introduction, we see that the martingale property in (1.7) is de-
rived using only the Markov property, and not the particular functional structure
of Rt.

The function Ψ(t, r) is independent of t if e.g. Rt is a homogeneous Markov
process and T =∞, and becomes then identical to the probability of ruin in infinite
time with initial reserve r. With a finite time horizon or e.g. time dependent
intensities the dependence on t cannot in general be suppressed. In the numerical
procedures for evaluating ruin probabilities, we primarily operate with T < ∞
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since it is then possible to state the initial condition Φ(T, r) = 1 for all r, and then
solve Φ(t, r) over [0, T ) for some values of r.

Another relation: Using that Mt∧τ = E(I(τ < T | Ft∧τ ) (optional sampling),
we obtain by taking conditional expectation on both sides in (1.7) w.r.t. the
Ft∧τ -measurable stochastic variable (t ∧ τ,Rt∧τ ), that

P (τ < T | t ∧ τ,Rt∧τ ) = Ψ(t ∧ τ,Rt∧τ ). (1.8)

We now introduce the technique that leads to the differential equations. We
assume that Φ(t, r) has continuous partial derivatives for t, r > 0, which are de-
noted ∂Φ

∂t (t, r) and ∂Φ
∂r (t, r), respectively. The change of variable formula yields for

t ∈ [0, T ) :

Φ(t ∧ τ,Rt∧τ )− Φ(0, R0)

=

∫ t∧τ

0

∂Φ

∂t
(s,Rs)ds+

∫ t∧τ

0

∂Φ

∂r
(s,Rs)b(s,Rs)ds

+
∑
s≤t∧τ

[Φ(s,Rs)− Φ(s,Rs−)]

=

∫ t∧τ

0

∂Φ

∂t
(s,Rs)ds+

∫ t∧τ

0

∂Φ

∂r
(s,Rs)b(s,Rs)ds

+

∫ t∧τ

0

∫
Z

[Φ(s,Rs− − f(s, z))− Φ(s,Rs−)]dNs(dz)

=

∫ t∧τ

0

∂Φ

∂t
(s,Rs)ds+

∫ t∧τ

0

∂Φ

∂r
(s,Rs)b(s,Rs)ds

+

∫ t∧τ

0

∫
Z

[Φ(s,Rs − f(s, z))− Φ(s,Rs)]λs(dz)ds+M∗t , (1.9)

where

M∗t =

∫ t

0

∫
Z
I(τ ≥ s)[Φ(s,Rs− − f(s, z))− Φ(s,Rs−)]dMs(dz), (1.10)

and Mt(A) is given by (0.5) in Chapter 2, and we have replaced Rt− with Rt when
integration is w.r.t. Lebesgue measure. Since Rt− and I(τ ≥ t) are processes
with left-continuous paths and f is deterministic, the integrand in (1.10) is Ft-
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predictable, hence M∗t is a zero mean Ft-martingale. Thus

Φ(t ∧ τ,Rt∧τ )− Φ(0, R0)−M∗t

=

∫ t∧τ

0

∂Φ

∂t
(s,Rs)ds+

∫ t∧τ

0

∂Φ

∂r
(s,Rs)b(s,Rs)ds−

∫ t∧τ

0

Φ(s,Rs)λsds

+

∫ t∧τ

0

∫
Z

Φ(s,Rs − f(s, z))λs(dz)ds (1.11)

is a zero mean Ft-martingale. Obviously (1.11) is a continuous FV-process and
then, by Theorem 1.3 in Chapter 4, zero. Thus∫ t∧τ

0

∂Φ

∂t
(s,Rs)ds+

∫ t∧τ

0

∂Φ

∂r
(s,Rs)b(s,Rs)ds

=

∫ t∧τ

0

Φ(s,Rs)λsds−
∫ t∧τ

0

∫
Z

Φ(s,Rs − f(s, z))λs(dz)ds. (1.12)

Using (1.5) (Φ(t, Rt) = 0, Rt < 0), we can always replace the double integral∫ t
0

∫
Z with

∫ t
0

∫
{z|Rs≥f(s,z)}.

We need the more generel formulation: Fix an arbitrary t′ < T , and define

τ ′ = inf{t ≥ t′ |Rt < 0},

which is the first time of ruin after time t′, and repeat the arguments leading to
(1.7) to state that

M ′t = Φ(t ∧ τ ′, Rt∧τ ′), t ∈ [t′, T ),

is an Ft-martingale. Similarly to (1.12), we can then arrive at

∫ t∧τ ′

t′

∂Φ

∂t
(s,Rs)ds+

∫ t∧τ ′

t′

∂Φ

∂r
(s,Rs)b(s,Rs)ds

=

∫ t∧τ ′

t′
Φ(s,Rs)λsds−

∫ t∧τ ′

t′

∫
Z

Φ(s,Rs − f(s, z))λs(dz)ds. (1.13)

Theorem 1.1 For any fixed t′ ∈ [0, T ), the process Ψ(t ∧ τ ′, Rt∧τ ′), t ∈ [t′, T ), is
a (uniformly integrable) martingale, and over the continuity points of λt(A) and f ,
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the function Φ(t, r) = 1−Ψ(t, r) satisfies the partial integro-differential equation

∂Φ

∂t
(t, r) +

∂Φ

∂r
(t, r)b(t, r)

= Φ(t, r)λt −
∫
{z | r≥f(t,z)}

Φ(t, r − f(t, z))λt(dz), t ∈ (0, T ), r > 0.

(1.14)

Proof: Follows by (1.13) since t′ is arbitrarily chosen on [0, T ) and by definition
τ ′ ≥ t′. 2

We get by (1.14) that Φ(t, Rt), for Rt > 0, satisfies ÃΦ = 0, where Ã is the
extended generator of Rt, but remark that Φ(t, Rt) is not a martingale.

In the case where b(t, r) is independent of r, which we denote b(t), the Rt
process in (1.1) has independent increments and therefore, for b(t) > 0 (ruin only
at jumps), we can for t ∈ [0, T ], u ≥ 0, heuristically establish the relation

Ψ(t, u) =

∫ T

t

∫
Z
e−

∫ η
t
λsdsΨ(η, u+

∫ η

t

b(s)ds− f(η, z))λη(dz)dη.

By differentiation we get for t ∈ (0, T ), u > 0

∂Ψ

∂t
(t, u) = −

∫
Z

Ψ(t, u− f(t, z))λt(dz) + λtΨ(t, u)

+

∫ T

t

∫
Z
e−

∫ η
t
λsds

∂Ψ

∂t
(η, u+

∫ η

t

b(s)ds− f(η, z))λη(dz)dη

= λtΨ(t, u)−
∫
Z

Ψ(t, u− f(t, z))λt(dz)− b(t)
∂Ψ

∂r
(t, u).

which leads to (1.14). In general this approach is, of course, not applicable.

When evaluating (1.14) numerically it is convenient to transform it into a
first order integro-differential equation. Firstly, let Ut be a non-negative function
satisfying the differential equation

dUt
dt

= b(t, Ut), (1.15)

meaning that Ut plays the role of Rt between the jumps. Using integration by parts
on Φ(t, Ut), we can then use (1.14) to establish the integro-differential equation

dΦ(t, Ut) = Φ(t, Ut)λtdt−
∫
{z |Ut≥f(t,z)}

Φ(t, Ut − f(t, z))λt(dz)dt. (1.16)
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Furthermore, introduce the function Φ̃u(t) ≡ Φ(t, u +
∫ t

0
b(s, Us)), u ∈ R, where

Ut = u+
∫ t

0
b(s, Us)ds, is referred to as the characteristic curve or just the charac-

teristic, see e.g. Smith (1985, pp. 175-181). Using (1.15) and (1.16), we can then
obtain the differential equation

dΦ̃u
dt

(t) = Φ̃u(t)λt −
∫
{z |Ut≥f(t,z)}

Φ̃u−f(t,z)(t)λt(dz). (1.17)

With the initial condition Φ̃u(T ) = 1, u ≥ −
∫ T

0
b(s, Us)ds, and T < ∞, (1.17)

must be solved numerically, see Subsection 1.3 for an example.

When operating with point process histories we could more directly derive
(1.16) by finding the martingale representation of Φ(t ∧ τ,Rt∧τ ) similarly as de-
scribed in Theorem 1.1 and 2.1 in Chapter 3. Combining (1.10) and the fact that
the martingale in (1.11) is zero, we already know that the representation must
have the form

Φ(t ∧ τ,Rt∧τ )− Φ(0, R0)

=

∫ t∧τ

0

∫
Z

[Φ(s,Rs− − f(s, z))− Φ(s,Rs−)]dMs(dz), t ∈ [0, T ],

or more generally

Φ(t ∧ τ ′, Rt∧τ ′)− Φ(t′, Rt′)

=

∫ t∧τ ′

t′
[Φ(s,Rs− − f(s, z))− Φ(s,Rs−)]dMs(dz), t ∈ [t′, T ].

The representation states that Φ(t, Rt) between the jumps (dNt = 0) develops in
accordance with the differential equation (1.16), where Rt takes the role of Ut.
Therefore, using the representation theorem, we can arrive directly at (1.16) and
then (1.17), which is the essential equation in a numerical procedure. So it is not
crucial to assume that Φ has continuous partial derivatives (governed by a vector
field), which is required when operating with generators for PD Markov processes.
For instance, we get by (1.16) that t→ Φ(t, Ut) is (absolutely) continuous and, over
the continuity points of λt(A) and f , is a differentiable function satisfying (1.17).
In this paper integration by parts is chosen for convenience only, and is applica-
ble when considering processes which can be transformed into Markov processes.
On the other hand, it seems more informative to go via the representation theorem.

In the following we focus on the homogeneous case. This is obtained by as-
suming that b(t, r), f(t, z), and λt(A) are independent of t. The intensity is then
given by

λt(dz) = λG(dz), (1.18)
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where λ (> 0) is the intensity of the homogeneous Poisson process Nt, and G is
the distribution of the i.i.d. (independent and identically distributed) random
variables Z1, Z2, . . . We consider the reserve

Rt = R0 +

∫ t

0

b(Rs)ds−
∫ t

0

∫
R
z dNs(dz), (1.19)

where in particular
∫ t

0

∫
R z dNs(dz) =

∑Nt
i=1 Zi, is a compound Poisson process.

Using the property of homogeneity, we get

Ψ(t, r) = P ( inf
t≤s<T

Rs < 0 |Rt = r)

= P ( inf
0≤s<T−t

Rs < 0 |R0 = r)

= P (τ < T − t |R0 = r).

We can then as well consider Φ∗ = 1−Ψ∗, with

Ψ∗(t, r) = P (τ < t |R0 = r),

satisfying Ψ∗(0, r) = 0, for all r ≥ 0. Since Ψ∗(t, r) = Ψ(T − t, r) on (0, T ], we can
then by virtue of Theorem 1.1 state:

Corollary 1.2 Suppose Rt is a homogeneous Markov process given by (1.19).
Then the function Φ∗(t, r) = 1 − Ψ∗(t, r) satisfies the partial integro-differential
equation

−∂Φ∗

∂t
(t, r) +

∂Φ∗

∂r
(t, r)b(r)

= Φ∗(t, r)λ− λ
∫
{z | r≥z}

Φ∗(t, r − z)G(dz), t, r > 0. (1.20)

Having evaluated Φ∗ (numerically) over (0, T ], T <∞, we can evaluate quantities
such as
E[τI(τ < T ) |R0 = r] and E[τ ∧ T |R0 = r], and higher moments. For instance

E[τ ∧ T |R0 = r] =

∫ T

0

Φ∗(s, r)ds

=

∫ T

0

Φ(s, r)ds, (1.21)

where the first equality sign follows by definition, and the second follows from
Φ∗(t, r) = Φ(T − t, r).
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By defining Ψ(r) = limt↑∞Ψ∗(t, r), we can, by cancelling the differentiation
w.r.t. t in (1.20), obtain an integro-differential equation for the non-ruin proba-
bility in infinite time (compare with the comments preceding (1.8)),

Φ(r) = 1−Ψ(r).

We can now state:

Corollary 1.3 Suppose Rt is a homogeneous Markov process given by (1.19).
Then Ψ(Rt∧τ ) is a (uniformly integrable) martingale, and the function Φ(r) =
1−Ψ(r) satisfies the integro-differential equation

dΦ

dr
(r)b(r) = λΦ(r)− λ

∫
{z | r≥z}

Φ(r − z)G(dz), r > 0. (1.22)

Asmussen and Petersen (1988) have established an integral equation for evaluating
the probability of ruin in infinite time, when Rt is given by (1.19) with b(r) > 0,
and Zi > 0. Equation (1.22) seems not to appear in Asmussen and Petersen (1988)
or Petersen (1989), but can easily be derived using their connection between the
stationary density of the content dam process and the non-ruin probability. If,
furthermore, b(r) is independent of r, (1.22) leads to the well-known equation for
the classical model, see e.g. Grandell (1990, p. 4).

There is one case where we can shift to a homogeneous Markov process when
evaluating the probability of ruin in infinite time for a non-homogeneous Markov
process:

Example 1.1. The classical model under discounting.
When considering ruin in infinite time, (1.14) can be reduced to an ordinary dif-
ferential equation in r under suitable stationarity conditions: The risk process
Xt =

∑Nt
n=1 Zn is a compound Poisson process with underlying intensity given

by (1.18). Consider the economic environment where payments are discounted in
accordance with a constant force of interest δ 6= 0, so that the annual discount
factor is v = e−δ. Premiums are paid continuously at a constant rate b > 0. The
present value by time 0 of the surplus is given by

Rt = R0 + b

∫ t

0

vsds−
Nt∑
n=1

vTnZn,

which is a time non-homogeneous FNt -Markov process, and is of the form (1.1)
with b(t, r) ≡ bvt, f(t, z) ≡ vtz. Due to the stationarity property of Xt and δ and
since T =∞, it should then be obvious that

Ψ(t, r) = Ψ(0, r/vt), (1.23)

which means that the probability of getting ruined after time t with reserve r is
equivalent to getting ruined at time zero with initial reserve r/vt. Therefore

∂Φ

∂t
(t, r) = rδv−t

∂Φ

∂r
(0, r/vt). (1.24)
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Putting t = 0 in (1.14) and (1.24), we get (see also Delbaen and Haezendonck,
1987, pp. 105-107),

(b+ δr)
∂Φ

∂r
(0, r) = λΦ(0, r)− λ

∫ r

0

Φ(0, r − z)G(dz).

Consequently, the ruin probability in an economic environment as described above
can also be viewed as a ruin probability for a risk reserve consisting of the reserve
dependent premium b(r) = b+ δr and risk process Xt. Obviously, this means that
the ruin probability is reduced in the presence of positive interest.

This result holds over any time horizon [0, T ) also for a time dependent force
of interest and for a general Xt process, but then (1.23) is no longer valid. This
can be seen as follows: Let δ(t) be the time dependent force of interest assumed
to be piecewise continuous, and let R̃t be the risk reserve consisting of the reserve
dependent premium b(t, r) = b(t) + δ(t)r, such that R̃t fulfills the differential
equation

dR̃t = b(t)dt+ δ(t)R̃tdt− dXt,

which has the solution

R̃t = e
∫ t
0
δ(s)ds

{
R̃0 +

∫ t

0

b(s)e−
∫ s
0
δ(u)duds−

∫ t

0

e−
∫ s
0
δ(u)dudXs

}
.

The first time R̃t becomes negative over [0, T ) is equivalent to the first time the
process in parentheses becomes negative, which is the risk reserve in the economic
environment with interest rate δ(t) and premium rate b(t). 2

5.1.2 Relations to other results

Below we shall discuss the results in the light of the set-up in Dassios and Em-
brechts (1989). The discussion is only applicable for T < ∞. They focus on a
process Yt, consisting of two components (ηt, Qt), where ηt is set to 1 and Qt = Rt,
whenever Rt > 0, if ruin has not occurred by time t, otherwise ηt = 0 and Qt is
defined to be absorbed in 0. By finding h in the domain of the extended generator
A for the Yt process satisfying Ah(t, y) = 0, they obtain that h(t, Yt) becomes a
martingale. Using an approach similar to that in Dassios and Embrechts (1989,
p. 187), we conclude that h(t, Yt) = h(t, 1, Qt)I(Qt > 0) is a martingale, where
h(t, 1, r) satisfies an equation similar to (1.14) for all t, r > 0, and h(t, 0, 0) = 0.
If, furthermore T < ∞ and h is chosen such as h(T, 1, r) = 1 for all r > 0, then
by conditioning on (τ < T ) and (τ ≥ T ), respectively, and using the martingale
property of h(t, Yt), they obtain that

P (τ ≥ T |R0 = r) = h(0, 1, r), ∀r > 0,

where we define P (τ ≥ T |R0 = 0) = limr↓0 h(0, 1, r). By virtue of Theorem 1.1
we allow to make the identification

h(t, 1, Rt)I(Rt ≥ 0) = Φ(t, Rt),

which not seems to have been dicussed in their paper.
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5.1.3 Numerical illustrations

In this subsection we shall give some examples of numerical evaluation of (1.17).
We discretize the integral term by use of a Simpson formula and solve the respective
system of differential equations recursively over [0, T ) by use of the classical Runge-
Kutta method.

We consider a risk reserve of the form

Rt = R0 + c t−
Nt∑
i=1

Zi, (1.25)

where R0 ≥ 0 is the initial reserve, c > 0 is the constant premium rate, and we
assume that the intensity is given by (1.18), where G is assumed to possess a
continuous density g on R+. Then (1.17) reads for t ∈ (0, T )

dΦ̃u
dt

(t) = Φ̃u(t)λ− λ
∫
{z |u+c t≥z}

Φ̃u−z(t) g(z)dz. (1.26)

For a fixed U > 0, we want to evaluate Φ̃u(0) for some u ∈ [0, U ]. Let 0 = t0 <
t1 < · · · < tm = T , be a partition of the interval [0, T ] with an equidistant division
norm h = ti − ti−1. Starting with the initial condition Φ̃u(T ) = 1, u ≥ −c T , we
evaluate recursively Φ̃u(ti) for u ∈ [−c ti, U ], i = m − 1,m − 2, . . . , 0, where the
intervals [−c ti, U ] also are divided into subintervals with division norm h.

For an example, assume that G is an exponential distribution function with
mean 1, implying that

g(x) = e−x, x ≥ 0. (1.27)

Table 1: Values of Ψ̃r(0) = 1− Φ̃r(0) under (1.26), (1.18), (1.27) with
parameters

U = 15, T = 1
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λ = 10 λ = 10 λ = 20
c = 11 c = 11 c = 22

r h = 10 h = 20 h = 20

0 0.794830 0.790128 0.835602
1 0.620574 0.616550 0.693935
2 0.475711 0.472393 0.570218
3 0.358370 0.355709 0.463685
4 0.265552 0.263470 0.373199
5 0.193722 0.192128 0.297356
6 0.139244 0.138048 0.234598
7 0.098692 0.097811 0.183309
8 0.069027 0.068390 0.141891
9 0.047674 0.047220 0.108829

10 0.032534 0.032217 0.082729
11 0.021951 0.021733 0.062344
12 0.014651 0.014503 0.046587
13 0.009678 0.009580 0.034528
14 0.006330 0.006266 0.025386
15 0.004101 0.004060 0.018521

The figures in Table 1 were evaluated by running a simple Pascal program on a
Personal Computer. The choices of the parameters correspond to a safety loading
on the premium of

ρ = 1− c

λE[Z1]
= 0.1.

Unfortunately, when comparing columns 1 and 2, there seems to be an inaccuracy,
especially for smaller values of r.

5.2 More complex models

In this section we will discuss some models of relevance to insurance where the
risk reserve is not necessarily Markov, but where a Markovization is feasible. We
will study cases where the intensity is allowed to be a stochastic process.

Firstly, we will extend the model assumptions from Section 1 by allowing the
intensity to depend on the history only via Nt−. This is indicated by writing
λt(Nt−, A). An example could be the following: Assume Nt is a homogeneous
Poisson process with intensity λ and independent of Z1, Z2, . . . , which also are
assumed mutually independent such that Zn is assumed to be distributed in ac-
cordance with Gn. The intensity would then become

λt(Nt−, dz) = λGNt−+1(dz).

We will consider the more general version of (1.1):

Rt = R0 +

∫ t

0

b(s,Rs, Ns)ds−
∫ t

0

∫
Z
f(s, z)dNs(dz), (2.1)
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where for each n, (t, r)→ b(t, r, n) takes the role of b in (1.1). We could also allow
f to depend on Nt−, but for simplicity we avoid this. Then (Rt, Nt) becomes a
Markov process, and the martingale in (1.7) reads

Mt∧τ = Ψ(t ∧ τ,Rt∧τ , Nt∧τ ), (2.2)

where Ψ(t, r, n) = P (inft≤s<T Rs < 0 |Rt = r,Nt = n). The function Φ(t, r, n) =
1−Ψ(t, r, n) will only change in t and r between the jumps and is assumed to be
governed by the continuous partial derivatives, ∂Φ

∂t (t, r, n) and ∂Φ
∂r (t, r, n), respec-

tively. Repeating the techniques and arguments used in Section 1, we obtain the
following partial integro-differential equation for Φ(t, r, n):

∂Φ

∂t
(t, r, n) +

∂Φ

∂r
(t, r, n)b(t, r, n)

= Φ(t, r, n)λt(n)−
∫
{z | r≥f(t,z)}

Φ(t, r − f(t, z), n+ 1)λt(n, dz). (2.3)

Using arguments similar to those following (1.15), (2.3) implies that for a non-
negative function Ut satisfying the differential equation

dUt
dt

= b(t, Ut, n), n ≥ 0,

Φ(t, Ut, n) satisfies the differential equation

dΦ(t, Ut, n) = Φ(t, Ut, n)λt(n)dt

−
∫
{z |Ut≥f(t,z)}

Φ(t, Ut − f(t, z), n+ 1)λt(n, dz)dt, (2.4)

which leads to the following system of integro-differential equations in n:

dΦ̃u
dt

(t, n) = Φ̃u(t, n)λt(n)

−
∫
{z |Ut≥f(t,z)}

Φ̃u−f(t,z)(t, n+ 1)λt(n, dz), (2.5)

where Φ̃u(t, n) ≡ Φ(t, u +
∫ t

0
b(s, Us, n)ds, n), and Ut = u +

∫ t
0
b(s, Us, n)ds. The

initial condition becomes Φ̃u(T, n) = 1, u ≥ −
∫ T

0
b(s, Us, n)ds and n ≥ 0, and sys-

tem (2.5) must finally be solved numerically. This problem shall not be pursued
here.

Finally, we will study the probability of ruin in a Markovian environment. The
set-up here is more general than that treated in Reinhard (1984) and Asmussen

46



(1989) since the processes involved can be of non-homogeneous Markov type and,
further, the premium is allowed to depend on the environment and reserve.

Assume there is given an (observable) Markov jump process (Θt)t≥0, which
for simplicity is assumed to have finite state space J = {1, . . . , J} and satisfying
Θ0 = 1. The intensity is assumed to fluctuate according to Θt, that is, it is
assumed to be a function of Θt. To study this model in the framework of a point
process, we let the marks represent either the pair of states (θi−1, θi), caused by a
transition of Θt at time Ti, or represent the pair (Yi, θi), where Yi is some random
variable assumed for simplicity to be non-negative and typically representing a
claim amount. To compare the results here with those in Reinhard (1984), we will
assume that these two kinds of event cannot coincide. We write N(t, A) instead
of Nt(A) and decompose it into the two associated counting processes

Ni(t, B) =
∑
k≥1

I(Tk ≤ t, Yk ∈ B, ΘTk = i), B ∈ B+, (2.6)

(2.7)

Nij(t) =
∑
k≥1

I(Tk ≤ t, ΘTk = j, ΘTk− = i), i 6= j. (2.8)

(2.9)

The natural filtration FNt can now be considered as generated by (2.6) and (2.8).
As mentioned above, we assume that (2.6) and (2.8) cannot have common jumps.

The intensities of the counting processes (2.6), (2.8) are denoted λi(t, B) and
λij(t), respectively, and are assumed to depend on the history only via Θt.

Consider the risk reserve

Rt = R0 +

∫ t

0

bΘs(s,Rs)ds−
∑
i∈J

∫ t

0

∫
R+

fi(s, y)dNi(s, dy),

where bi(t, r) takes the role of b(t, r) in (1.1). Then (Rt,Θt) becomes a non-
homogeneous Markov process, which implies that the martingale in (1.7) reads

Mt∧τ = ΨΘt∧τ (t ∧ τ,Rt∧τ ),

where Ψi(t, r) = P (inft≤s<T Rs < 0 |Rt = r, Θt = i).
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Using the change of variable formula for ΦΘt(t, Rt) = 1−ΨΘt(t, Rt), we obtain

ΦΘt∧τ (t ∧ τ,Rt∧τ )− ΦΘ0
(0, R0)

=

∫ t∧τ

0

∂ΦΘs

∂t
(s,Rs)ds+

∫ t∧τ

0

∂ΦΘs

∂r
(s,Rs)bΘs(s,Rs)ds

+
∑
i

∫ t∧τ

0

∫
R+

[Φi(s,Rs− − fi(s, y))− Φi(s,Rs−)]dNi(s, dy)

+
∑
i 6=j

∫ t∧τ

0

[Φi(s,Rs)− Φj(s,Rs)]dNij(s), (2.10)

where
∑
i6=j =

∑
i

∑
j 6=i. It is used in (2.10) that the counting processes do not

have common jumps, and in particular we have replaced Rt− with Rt in the last
term. Put λ̄i(t) =

∑
j 6=i λij(t) and let λi(t) = λi(t,R+). Repeating the arguments

leading to Theorem 1.1 we can obtain the following system of partial differential
equations:

∂Φi
∂t

(t, r) +
∂Φi
∂r

(t, r)bi(t, r)

= Φi(t, r)λi(t)−
∫
{y | r≥fi(t,y)}

Φi(t, r − fi(t, y))λi(t, dy)

+ Φi(t, r)λ̄i(t)−
∑
j 6=i

Φj(t, r)λij(t)

= Φi(t, r)(λi(t) + λ̄i(t))−
∫
{y | r≥fi(t,y)}

Φi(t, r − fi(t, y))λi(t, dy)

−
∑
j 6=i

Φj(t, r)λij(t), t ∈ (0, T ), r > 0. (2.11)

In particular one sees that (2.11) reduces to an equation similar to (1.14) if Θt can
admit only a single value.

An example of λi(t, B) could be

λi(t, dy) = λi(t)Fi(dy),

where λi(t) can be interpreted as a claims intensity for Ni(t) ≡ Ni(t,R+), and
Fi as a claim amount distribution depending on the state of Θt, where Ni(t) and
the claim amounts are conditionally independent given Θt = i. Reinhard (1984)
studied this case with fi(t, y) ≡ y, and λi(t), λij(t) independent of t and bi(t, r)
independent of t and r.
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Chapter 6

Diffusion approximations

In this chapter we will see applications of the advanced theory of stochastic calculus
for identifying limiting distributions for a risk business. The limiting distributions
will be of diffusion type, see below. We will view the process governing the risk
business as a semimartingale, which is a process consisting of a sum of a local
martingale and a process with paths of bounded variation over finite intervals.
Furthermore, the process of bounded variation will be assumed continuous.

Diffusions approximations have mainly been studied in the classical model,
where the jumps are governed by a homogeneous Poisson process and the size of the
jumps represent claim amounts assumed to be i.i.d. (independent and identically
distributed) and independent of the Poisson process. For this model, Grandell
(1977) studied the probability of ruin by obtaining a diffusion approximation to
a Gaussian process. The approximation is obtained by simultaneously increasing
the initial reserve and the period of time and further letting the safety loading
decrease, all of the same order. Asmussen (1984) uses the same idea, but also
proposes a refinement of the approximation.

Sheike (1992) considers sequences of risk processes by summation over i.i.d.
processes, and uses the martingale limit theorem to obtain a diffusion approxima-
tion when the number of risk units increases.

In Section 1, we stress the conditions to obtain a diffusion approximation for a
sequence of semimartingales. In Subsection 1.1, we study some applications when
the point processes are of Poisson type. In Subsection 1.2, we generalize the first
part of Subsection 1.1 to the case where the point processes are of mixed Poisson
type.

The approximations are obtained by showing weak convergence of the sequence
of processes governing the risk business to a continuous Ito process. The sequence
of processes are considered as elements in the space D of right-continuous func-
tions with left-hand limits. This space is endowed with the Skorohod topology,

and we write X(n) W−→ X when X(n) converges weakly to X as n → ∞. When

X(n), X are real valued random variables we instead write X(n) d−→ X. Rigorous
exposition on this topic can e.g. be found in Liptser and Shiryaev (1989).
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A diffusion process appears in its general form as

Yt = Y0 +

∫ t

0

b(s, Ys)ds+

∫ t

0

σ(s, Ys)dBs, (0.1)

where the coefficients b : R+×R → R and σ : R+×R → R are Borel-measurable
mappings, and (Bt)t≥0 is a Brownian motion assumed to be given in advance
on (Ω,F , P ). With suitable conditions on b and σ, see e.g. Øksendal (1992,
pp. 48-49), and for a given random variable U , E[U2] < ∞, independent of
FB∞ = σ(Bs, s <∞), there exists a (strong) solution to (0.1) with Y0 = U , which
is adapted to the filtration FBt = σ(Bs, s ≤ t). For the cases to be studied, we will
always assume that there exsists a unique solution to (0.1), such that the process
I defined by

It =

∫ t

0

σ(s, Ys)dBs (0.2)

becomes a well defined zero mean martingale, satisfying the Ito isometry (Øksendal
1992, pp. 18-21)

E

[∫ t

0

σ(s, Ys)dBs

]2

= E

[∫ t

0

σ2(s, Ys)ds

]
, t ∈ [0, T ].

We will below only consider cases where σ is non-stochastic, implying that (0.2)
becomes a Gaussian process (independent increments) with variance function

φ(t) =

∫ t

0

σ2(s)ds.

6.1 Conditions for weak convergence

Throughout we assume that each individual risk unit can be modelled as a semi-
martingale

Rt = R0 +At +Mt, (1.1)

where Mt is the zero mean martingale

Mt = X
(f)
t −

∫ t

0

∫
Z
f(s, z)λs(dz)ds, (1.2)

and At is an FV process with continuous paths, usually referred to as the drift
term.
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The bracket process of Mt (and also Rt) is assumed to exist forall t <∞, and
is given by

< M >t=

∫ t

0

∫
Z
f2(s, z)λs(dz)ds. (1.3)

This process plays a crucial part in obtaining the diffusion approximations. In
particular, (1.3) implies that Mt becomes a locally square integrable martingale.

Let now N
(n)
t (A) be a sequence of marked point processes possessing FN(n)

t -

intensities λ
(n)
t (A), where FN(n)

t denotes the filtration generated by N
(n)
t (A). Fur-

thermore, we consider a sequence R(n) of semimartingales

R
(n)
t = R

(n)
0 +A

(n)
t +M

(n)
t , (1.4)

where for each n, A(n) is as described in (1.1), and M
(n)
t is a zero mean FN(n)

t -

martingale defined as in (1.2) with λt(A) replaced by λ
(n)
t (A).

We will stress the conditions to obtain a diffusion approximation for

Q(n) = anR
(n),

where an is a sequence of positive constants tending to zero as n tends to infinity:

Assume there exists a function L : R+ → R+ satisfying∫ t

0

L(s)ds <∞, t ∈ R+, (1.5)

such that b in (0.1) satisfies the (linear growth) condition (Liptser and Shiryayev
1989, p. 623)

|b(t, Yt)| ≤ L(t)(1 + sup
s≤t
|Ys|), t ∈ R+. (1.6)

Assume also that (Liptser and Shiryayev 1989, pp. 624, 639)

sup
s≤t
|anA(n)

s −
∫ s

0

b(u,Q(n)
u )du| P−→ 0, n→∞, t ∈ R+, (1.7)

where P denotes convergence in probability. Furthermore, the bracket process of

Q
(n)
t must converge (uniformly over finite intervals) in probability to the variance

(process) of the limiting process:

< Q(n) >t

= a2
n

∫ t

0

∫
Z
f2(s, z)λ(n)

s (dz)ds
P−→
∫ t

0

σ2(s)ds, n→∞. (1.8)

51



Finally we need the Lindeberg condition:∑
s≤t

(4Q(n)
s )2I(|4Q(n)

s | > ε)

= a2
n

∫ t

0

∫
Z
f2(s, z)I(an|f(s, z)| > ε)dNs(dz)

P−→ 0, ε > 0, n→∞.

(1.9)

Since convergence in mean implies convergence in probability, (1.9) is obtained
whenever

a2
nE

[∫ t

0

∫
Z
f2(s, z)I(an|f(s, z)| > ε)λ(n)

s (dz)ds

]
−→ 0, ε > 0, n→∞.

(1.10)

The Lindeberg condition ensures that the limiting process becomes continuous.

According to Liptser and Shiryayev (1989, pp. 624, 625, 639), we can then
state:

Theorem 1.1 Consider the sequence of processes given by (1.4). Assume that

Q
(n)
0

d−→ Y0, n→∞.

Then under (1.5)-(1.9)

Q(n) W−→ Y, n→∞,

where Y is the diffusion

Yt = Y0 +

∫ t

0

b(s, Ys)ds−
∫ t

0

σ(s)dBs.

6.1.1 The Poisson case

Throughout this section, we assume that the sequence of point processes are Pois-
son processes, and firstly we pay attention to the case where the intensities are
given by

λ
(n)
t (dz) = λ(n)Gt(dz), (1.11)

such that λ(n) →∞ as n→∞.

We then have:

52



Theorem 1.2 Consider the sequence of processes given by (1.4), and choose an =
(λ(n))−1/2. Assume that

Q
(n)
0

d−→ Y0, n→∞.

Then under (1.5)-(1.7) and (1.11)

Q(n) W−→ Y, n→∞,

where Y is the diffusion

Yt = Y0 +

∫ t

0

b(s, Ys)ds−
∫ t

0

σ(s)dBs,

with

σ2(t) =

∫
Z
f2(t, z)Gt(dz).

Proof : It is readily checked that

< Q(n) >t=

∫ t

0

∫
Z
f2(s, z)Gs(dz)ds,

which becomes deterministic and independent of n, and consequently (1.8) is ful-
filled. Condition (1.10) follows by dominated convergence. 2

As an example we can obtain:

Corollary 1.3 Consider the sequence of processes given by

R
(n)
t = R

(n)
0 +

∫ t

0

δsR
(n)
s ds

+(1 + α(n))λ(n)

∫ t

0

∫
Z
f(s, z)Gs(dz)ds−

∫ t

0

∫
Z
f(s, z)N (n)

s (dz),

where t → δt from R+ → R is assumed to be piecewise continuous. Let an =
(λ(n))−1/2, and assume that

Q
(n)
0

d−→ Y0, α(n)(λ(n))1/2 → 1, n→∞.

Then under (1.11)

Q(n) W−→ Y, n→∞,

where Y is the diffusion

Yt = Y0 +

∫ t

0

(µ(s) + δsYs)ds−
∫ t

0

σ(s)dBs,

with

µ(t) =

∫
Z
f(t, z)Gt(dz), σ2(t) =

∫
Z
f2(t, z)Gt(dz).
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Proof : Obviously R(n) becomes a sequence of semimartingales with drift term

A
(n)
t =

∫ t

0

δsR
(n)
s ds+ α(n)λ(n)

∫ t

0

∫
Z
f(s, z)Gs(dz)ds.

Hence

(λ(n))−1/2A
(n)
t =

∫ t

0

δsQ
(n)
s ds+ α(n)(λ(n))1/2

∫ t

0

∫
Z
f(s, z)Gs(dz)ds,

so (1.7) is trivially fulfilled with

b(t, y) = δt y +

∫
Z
f(t, z)Gt(dz).

Condition (1.6) is readily checked since:

|b(t, Yt)| = |δt Yt +

∫
Z
f(t, z)Gt(dz)|

≤ |δt| sup
s≤t
|Ys|+

∫
Z
|f(t, z)|Gt(dz)

≤ { |δt|+
∫
Z
|f(t, z)|Gt(dz) } (1 + sup

s≤t
|Ys|),

so (1.5) and (1.6) are obtained with

L(t) = |δt|+
∫
Z
|f(t, z)|Gt(dz).

Condition (1.8)-(1.9) follow as discussed in Theorem 1.2. 2

Consequently, we can obtain:

Corollary 1.4 Consider the sequence of zero mean FN(n)

t -martingales given by

M
(n)
t =

∫ t

0

∫
Z
f(s, z)dN (n)

s (dz)− λ(n)

∫ t

0

∫
Z
f(s, z)Gs(dz)ds.

Then

(λ(n))−1/2M (n) W−→ Y, n→∞,

where Y is the Gaussian process

Yt =

∫ t

0

σ(s)dBs,

with

σ2(t) =

∫
Z
f2(t, z)Gt(dz).
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Proof : Conditions (1.5)-(1.7) are no longer needed, and (1.8)-(1.9) follow as above
with Q(n) = (λ(n))−1/2M (n). 2

We will now turn to a more complicated situation, namely where the intensities
are given by

λ
(n)
t (dz) = λ(n)G(n)(dz), (1.12)

which corresponds to the general homogeneous case for N
(n)
t (A). We still assume

that λ(n) →∞ as n→∞.
To repeat the results above, we could face trouble in verifying the Lindeberg

condition, since there is now a possibility that large jumps can occur as n increases.
To make the theory applicable, we furthermore restrict attention to treat only

jump processes for the individual risk units of the form

X
(f)
t =

∫ t

0

∫
R
zf(s)dNs(dz), (1.13)

where f : R+ → R is some Borel measurable mapping.
The case of interest is when

lim inf
n

E[Z2
n] > 0, (1.14)

where

E[Z2
n] =

∫
R
z2G(n)(dz),

is assumed to exist for all n.
We assume that there exist non-negative functions H, H̃ of finite variation,

such that

1−G(n)(z) ≤ H(z), z ≥ 0,

∫
(0,∞)

zH(z)dz <∞,

G(n)(z) ≤ H̃(z), z < 0, −
∫

(−∞,0)

zH̃(z)dz <∞. (1.15)

We need the following Lemma:

Lemma 1.5 Under (1.15) we have

x2H(x)→ 0, x→∞,

x2H̃(x)→ 0, x→ −∞. (1.16)
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Proof : We only prove the result for x→∞.

It should be obvious that

H(x)→ 0, x→∞.

Switching the order of integration, we can then obtain∫ ∞
0

z2H(dz) = −2

∫ ∞
0

zH(z)dz.

Using integration by parts, we also get

x2H(x) =

∫ x

0

z2H(dz) + 2

∫ x

0

zH(z)dz.

Combining (1.17) and (1.17), the result follows by dominated convergence. 2

We will find the following relation useful:∫
R
z2I(|z| > x)G(n)(dz)

= 2

∫
R
zI(z > x)(1−G(n)(z))dz − 2

∫
R
zI(z < −x)G(n)(z)dz

+x2[1−G(n)(x) +G(n)(−x)], x ≥ 0, (1.17)

which is obtained by switching the order of integration.

We can now state:

Theorem 1.6 Consider the sequence of processes given by (1.4), where the jump
part is replaced by (1.13) such that f is non-vanishing and bounded over finite
intervals. Choose an = (λ(n)E[Z2

n])−1/2, and assume that

Q
(n)
0

d−→ Y0, n→∞.

Then under (1.5)-(1.7), (1.12) and (1.14)-(1.15)

Q(n) W−→ Y, n→∞,

where Y is the diffusion

Yt = Y0 +

∫ t

0

b(s, Ys)ds−
∫ t

0

f(s)dBs.
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Proof : Under (1.14) we have an → 0 as n→∞. Obviously

< Q(n) >t=

∫ t

0

f2(s)ds,

so (1.8) is trivially fulfilled.
Using first (1.17) and then (1.15), we can verify (1.10), since

a2
n

∫ t

0

∫
R
z2f2(s)I(an|zf(s)| > ε)λ(n)G(n)(dz)ds

= (E[Z2
n])−1

[
2

∫ t

0

f2(s)

∫
R
zI(z > |f−1(s)|ε/an)(1−G(n)(z))dzds

−2

∫ t

0

f2(s)

∫
R
zI(z < −|f−1(s)|ε/an)G(n)(z))dzds

+(ε/an)2

∫ t

0

{1−G(n)(|f−1(s)|ε/an) +G(n)(−|f−1(s)|ε/an)}ds
]

≤ 2(lim inf
n

E[Z2
n])−1

[
2

∫ t

0

f2(s)

∫
R
zI(z > |f−1(s)|ε/an)H(z)dzds

−2

∫ t

0

f2(s)

∫
R
zI(z < −|f−1(s)|ε/an)H̃(z)dzds

+(ε/an)2

∫ t

0

{H(|f−1(s)|ε/an) + H̃(−|f−1(s)|ε/an)}ds
]
.

Using (1.14) and dominated convergence, the first two terms converge to zero as
n→∞, and the last term also by (1.16). 2

As an example, we can similarly to Corollary 1.4 state:

Corollary 1.7 Consider the sequence of zero mean FN(n)

t -martingales given by

M
(n)
t =

∫ t

0

∫
R
zf(s)dN (n)

s (dz)− λ(n)

∫ t

0

∫
R
zf(s)G(n)(dz)ds,

where f is non-vanishing and bounded over finite intervals. Then under (1.14)-
(1.15) we have

(λ(n)E[Z2
n])−1/2M (n) W−→ Y, n→∞,

where Y is the Gaussian process

Yt =

∫ t

0

f(s)dBs.
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Proof : Conditions (1.5)-(1.7) are no longer needed, and (1.8)-(1.9) follow as
above. 2

Example 1.1. Suppose there are given m independent risk processes X
(n)
i (t),

i = 1, . . . ,m, such that each X
(n)
i (t) is a compound Poisson process with claim

intensity λ
(n)
i and claim amount distribution Fi. The total risk process of interest

becomes X(n)(t) =
∑m
i=1X

(n)
i (t) with FNt -intensity given by

λ
(n)
t (dz) =

m∑
i=1

λ
(n)
i Fi(dz)

= λ(n)G(n)(dz),

where λ(n) =
∑m
i=1 λ

(n)
i , and G(n) = 1

λ(n)

∑m
i=1 λ

(n)
i Fi,

such that
∫
R z

2Fi(dz) < ∞. Since the intensity process determines the process,

the risk process X(n)(t) can also be considered as a compound Poisson process.

Condition (1.14) is valid because

E[Z2
n] ≥ min

1≤i≤m

{∫
R
z2Fi(dz)

}
, ∀n,

and condition (1.15) is obtained with

H(z) =

m∑
i=1

(1− Fi(z)), H̃(z) =

m∑
i=1

Fi(z).

Hence, we can obtain diffusion approximations when the total (claims) intensity
λ(n) tends to infinity. 2

6.1.2 The mixed Poisson case

In this section, we will generalize the first part of Subsection 1.1 to a case where

the intensity process of N
(n)
t (A) is stochastic and depending only on the number

of jumps N
(n)
t . Namely, assume there is given a sequence of non-negative ran-

dom variables Θ(n) with mean one, such that for given Θ(n), N
(n)
t (A) admits the

intensity

λ̃
(n)
t (dz) = λ(n)Θ(n)Gt(dz).

In particular, we see that for given Θ(n), N
(n)
t is a Poisson process with intensity

λ(n)Θ(n), which is also referred to as the mixed Poisson process. The FN(n)

t -

intensity of N
(n)
t (A) then reads

λ
(n)
t (dz) = λ(n)E(Θ(n) |N (n)

t )Gt(dz). (1.18)
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The technical part in the following is to show convergence of the bracket process
in (1.8), which now reads

< Q(n) >t= a2
n λ

(n)

∫ t

0

∫
Z
f2(s, z)E(Θ(n) |N (n)

s )Gs(dz)ds. (1.19)

A tool to showing convergence of (1.19) is characteristic function, which al-
ready has been introduced in Chapter 4, Example 2.4. We need a more general
formulation:

Consider a sequence of FN(n)

t -measurable semimartingales Y
(n)
t , assumed to

possess an intensity measure λ
(n)
t (A). Let C denote the complex valued numbers.

Any complex number y is written y = Re y + i Imy, where Re y and Imy denote
the real and imaginary part of y, respectively. Also, keep in mind that

eix =

∞∑
k=0

(ix)k

k!
= cosx+ i sinx, ∀x ∈ R.

According to Jacod and Shiryaev (1987, p. 75 and p. 415-428), one must look for

a sequence of complex valued processes ψ
(n)
t (u), u ∈ R, of the form

ψ
(n)
t (u) = iuB

(n)
t − u2

2
C

(n)
t +

∫ t

0

∫
R

(eiuy − 1− iuy)λ(n)(dy)ds,

where B
(n)
t and C

(n)
t are cadlag processes such that

M
(n)
t = eiuY

(n)
t /eψ

(n)
t (u),

is an FN(n)

t -complex valued martingale for each n. The triplet (B(n), C(n), λ(n)(A))
is for each n called the characteristics of Y (n), and

φ
(n)
t (u) = eψ

(n)
t (u)

is called the characteristic function.
The sequence (Y

(n)
t )t≥0 then converges in distribution to a Gaussian process

Y = (Yt)t≥0 with triplet (µt, σ
2
t , 0) if

eψ
(n)
t (u) P−→ φt(u), n→∞,

uniformly in u and t over finite intervals, where

φt(u) = eiuµt−
u2

2 σ
2
t

is the characteristic function of the normal distribution with mean µt and variance
σ2
t .
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Lemma 1.8 Let h : R+ ×Z → R be some Borel measurable mapping fulfilling∫ t

0

∫
Z
|h(s, z)|Gs(dz)ds <∞, t > 0.

Then

(λ(n))−1

∫ t

0

∫
Z
h(s, z)(dN (n)

s (dz)− λ(n)E(Θ(n) |N (n)
s )Gs(dz)ds)

P−→ 0,

(1.20)

(λ(n))−1

∫ t

0

∫
Z
h(s, z)(dN (n)

s (dz)− λ(n)Θ(n)Gs(dz)ds)
P−→ 0, (1.21)

∫ t

0

∫
Z
h(s, z)E(Θ(n) |N (n)

s )Gs(dz)ds−Θ(n)

∫ t

0

∫
Z
h(s, z)Gs(dz)ds

P−→ 0,

(1.22)

uniformly in t over finite intervals as λ(n) →∞ for n→∞.

Proof : Only (1.20) is proved, because (1.21) is proved similarly by conditioning
on Θ(n), and (1.22) follows by subtraction of (1.20) from (1.21).

By Example 2.4 of Chapter 4, the sequence φ
(n)
t (u) of characteristic functions

of the sequence in (1.20) is given by choosing

ψ
(n)
t (u) = λ(n)

∫ t

0

∫
Z

(eiu(λ(n))−1h(s,z) − 1)E(Θ(n) |N (n)
s )Gs(dz)ds

−iu
∫ t

0

∫
Z
h(s, z)E(Θ(n) |N (n)

s )Gs(dz)ds. (1.23)

Using a series expansion for x→ eix in (1.23),

ψ
(n)
t (u) =

∫ t

0

∫
Z
r(n)
s (u, z)E(Θ(n) |N (n)

s )Gs(dz)ds,

where

r
(n)
t (u, z) = λ(n)

∞∑
k=2

[iu(λ(n))−1h(t, z)]k

k!

=

∞∑
k=1

[iu h(t, z)]k+1

(k + 1)!
(λ(n))−k.
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For fixed t, z, the mapping u → r
(n)
t (u, z) from R to C is differentiable with

derivative

r
(n) ′
t (u, z) = ih(t, z)

∞∑
k=1

[iu h(t, z)]k

k!
(λ(n))−k

= ih(t, z)(eiu(λ(n))−1h(t,z) − 1).

Also, r
(n)
t (0, z) = 0. By the mean value theorem there exist ξ, η ∈ (0, u) (may

depend on n) such that

r
(n)
t (u, z) = [Re r

(n) ′
t (ξ, z) + Im r

(n) ′
t (η, z)]u

= iu h(t, z)[cos(ξ(λ(n))−1h(t, z)) + isin(η(λ(n))−1h(t, z))− 1].

Thus

|r(n)
t (u, z)| ≤ 3|u||h(t, z)|.

It is clear that r
(n)
t (u, z)→ 0 as n→∞, and dominated convergence then implies

that ∫ t

0

∫
Z
|rs(u, z)|Gs(dz)ds→ 0, n→∞.

As convergence in mean implies convergence in probability, we get∫ t

0

∫
Z
|r(n)
s (u, z)|E(Θ(n) |N (n)

s )Gs(dz)ds
P−→ 0, n→∞,

and since the integrand is non-negative this convergence is uniform in t and u
over finite intervals. This shows that the characteristic function of the process in
(1.20) converges uniformly in probability to φt(u) ≡ 1, which is the characteristic
function of a Gaussian process with drift and variance equal to zero. The limit
process is thus equivalent to zero. By basic theory of weak convergence (see e.g.
Liptser and Shiryayev, 1989 p. 506) it then also follows that

S∗t = sup
s∈(0,t]

{(λ(n))−1

∫ s

0

∫
Z
h(τ, z)(dN (n)

τ (dz)− λ(n)E(Θ(n) |Nτ )Gτ (dz)dτ)},

converges in distribution to a Gaussian process with no drift and variance, which
completes the proof of (1.20). 2

We can make use of the lemma by further assuming

Θ(n) P−→ 1, n→∞. (1.24)

We can now state theorems similar to those in the Poisson case:
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Theorem 1.9 Consider the sequence of processes given by (1.4), and choose an =
(λ(n))−1/2. Assume that

Q
(n)
0

d−→ Y0, n→∞.

Then under (1.5)-(1.7), (1.18) and (1.24)

Q(n) W−→ Y, n→∞,

where Y is the diffusion

Yt = Y0 +

∫ t

0

b(s, Ys)ds−
∫ t

0

σ(s)dBs,

with

σ2(t) =

∫
Z
f2(t, z)Gt(dz).

Proof : Using (1.24) and (1.22) with h = f2, we immediately get

< Q(n) >t =

∫ t

0

∫
Z
f2(s, z)E(Θ(n) |N (n)

s )Gs(dz)ds

P−→
∫ t

0

∫
Z
f2(s, z)Gs(dz)ds, n→∞,

which proves (1.8). Finally, as in Theorem 1.2, condition (1.10) is fulfilled by
dominated convergence. 2

Furthermore, we can state:

Corollary 1.10 Consider the sequence of processes given by

R
(n)
t = R

(n)
0 +

∫ t

0

δsR
(n)
s ds

+(1 + α(n))λ(n)

∫ t

0

∫
Z
f(s, z)E(Θ(n) |N (n)

s )Gs(dz)ds

−
∫ t

0

∫
Z
f(s, z)N (n)

s (dz),

where t→ δt from R+ → R is assumed piecewise continuous. Let an = (λ(n))−1/2,
and assume that

Q
(n)
0

d−→ Y0, α(n)(λ(n))1/2 → 1, n→∞.
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Then under (1.18) and (1.24)

Q(n) W−→ Y, n→∞,

where Y is the diffusion

Yt = Y0 +

∫ t

0

(µ(s) + δsYs)ds−
∫ t

0

σ(s)dBs,

with

µ(t) =

∫
Z
f(t, z)Gt(dz), σ2(t) =

∫
Z
f2(t, z)Gt(dz).

Proof : As in the proof of Corollary 1.3, we write

A
(n)
t =

∫ t

0

δsR
(n)
s ds+ α(n)λ(n)

∫ t

0

∫
Z
f(s, z)E(Θ(n) |N (n)

s )Gs(dz)ds.

Hence

(λ(n))−1/2A
(n)
t =

∫ t

0

δsQ
(n)
s ds

+α(n)(λ(n))1/2

∫ t

0

∫
Z
f(s, z)E(Θ(n) |N (n)

s )Gs(dz)ds,

and using (1.22), (1.7) is trivially satisfied with

b(t, y) = δt y +

∫
Z
f(t, z)Gt(dz).

Condition (1.6) follows as in the proof of Corollary 1.3, and (1.8)-(1.9) as above.
2

Finally, we can obtain:

Corollary 1.11 Consider the sequence of zero mean FN(n)

t -martingales given by

M
(n)
t =

∫ t

0

∫
Z
f(s, z)dN (n)

s (dz)− λ(n)

∫ t

0

∫
Z
f(s, z)E(Θ(n) |N (n)

s )Gs(dz)ds.

Then under (1.24)

(λ(n))−1/2M (n) W−→ Y, n→∞,

where Y is the Gaussian process

Yt =

∫ t

0

σ(s)dBs,

with

σ2(t) =

∫
Z
f2(t, z)Gt(dz).
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Proof : Conditions (1.5)-(1.7) are no longer needed, and (1.8)-(1.9) follow as above
with Q(n) = (λ(n))−1/2M (n). 2

Remark that we could alternatively prove Corollary 1.11 by use of character-
istic function along the lines of the proof of Lemma 1.8.

Condition (1.24) states that if we can obtain the value of the sequence in the
limit, we are, roughly speaking, back in Poisson case of Subsection 1.1.

Example 1.2. Consider n independent risk units, such that for given Ψi, unit
i makes jumps (claims) with intensity λΨi, λ > 0. The latent random variables
Ψ1,Ψ2, . . . ,Ψn are assumed to be i.i.d. with E[Ψ1] = 1.

Since the risk units behave independently, the FN(n)

t -intensity process for the
total risk process becomes

λ
(n)
t (dz) = λE

(
n∑
i=1

Ψi | N (n)
t

)
Gt(dz),

where N
(n)
t represents the total number of jumps. This can obviously be written

on the form (1.18) with

Θ(n) =
1

n

n∑
i=1

Ψi, λ(n) = nλ,

where E[Θ(n)] = 1, and for given
∑n
i=1 Ψi, N

(n)
t is a sequence of Poisson processes

with intensity

λ

n∑
i=1

Ψi = λ(n)Θ(n).

The law of large numbers ensures that

Θ(n) P−→ E[Ψ1] = 1, n→∞,

and (1.24) is then fulfilled. 2
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