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Abstract

In this paper, we shall propose some martingale results and study their applications in risk theory. A
celebrated topic is the problem of evaluating the probability of ruin, which can be considered as a special case
of evaluating distributions of first exit (entry) times from (to) Borel sets. First, we shall mention how the time
of ruin can be related to the Doléans equation, implying that we can view the non-ruin probability as a mean of
an exponential. For infinite time ruin in the classical case, the problem partly reduces to integrating the tail of
the distribution function for the individual claim amounts. The risk business shall be modelled as a stochastic
process consisting of a continuous and discrete (jump) part. The building stones are delivered by the theory
of marked point processes and associated martingale theory, hereunder the important concept of an intensity
measure.

Furthermore, we shall propose some ideas on establishing integro-differential equation for evaluating the
distribution of the involved jump part (which typically represents the total amount of claims) for some fixed
period of time.

Also, we shall mention a martingale result valid for fairly general (Markov) processes, that can lead to (in-
tegro) differential equations for evaluating the distribution of exit times.

Keywords: Marked point process, Martingale, Doléans equation, Integro-differential equation, Ruin probabil-
ity, Exit time, Boundary value problems.

1 Introduction

A martingale approach for studying ruin probabilities (the classical Lunberg inequality) dates back to Gerber
(1973). A more refined formulation is given by Dassios and Embrechts (1989) who use results by Davis (1984)
for the extended generator for PD (piecewise deterministic) Markov processes to obtain funtionals that become
martingales; see also Møller (1992). Asmussen and Nielsen (1994) proposed a generalization of the Lundberg
inequality to the case where the premium depends on the reserve.

This paper proposes some (new) martingale results and techniques, appropriate for analysing insurance models,
initiated by the author’s PhD-thesis, see Møller (1991), (1992), (1993) and (1995). Martingales can be useful for
evaluating means of important functionals of processes related to the insurance business. However this requires
that the relevant martingales exist and are observed.

In Section 2, we outline some elements of point process theory which is used in the sequel. In Section 3 we
propose a (new) martingale result for studying the probability of ruin. We first observe that the indicator for
the time of ruin can be related to the Doléans equation. It is assumed that ruin only can occur at jumps of the
involved risk business. Explicit expressions seem not obtainable, but for the classical model (Subsection 3.3), we
can for the ruin probability in infinite time obtain a more tractable expression. However, this requires uniform
integrability of the martingale. In Section 4, we shall see that the martingale approach also leads to a way of
finding an integro-differential equation for evaluating the distribution of the jump part when it has independent
increments. Further results and techniques on integro-differential equations for evaluating the distribution of the
jump part are discussed. Finally, we shall in Section 5 propose an important martingale result, which can be useful
for identifying the distribution of an exit time (for fairly general Markov processes) from a differential equation
akin to the form of the extended generator for the involved Markov process.
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2 Some elements of point process theory

Assume throughout that there is given a filtered probability space (Ω,F ,Ft, P ), where the space (Ω,F , P ) is
assumed to be complete, and the family (Ft)t≥0 of σ-algbras satisfies the usual conditions.

Let Rn denote the n-dimensional euclidian space, equipped with the usual Borel σ-algebra B n. For n = 1, we
write R and B. Further, we let R+ denote the non-negative half line (also equipped with the Borel σ-algebra). For
the definitions and the martingale properties below, we refer to Brémaud (1981, pp. 8, 9, 234-236).

A marked point process is a sequence of stochastic pairs (Tn, Zn)n≥1, where T1, T2, . . . denote the non-negative
points representing times of occurrence of some phenomena Z1, Z2, . . . called the marks, which are assumed to
take values in some space Z endowed with a σ-algebra E . In non-life insurance the points could typically represent
times of occurrence of claims which could take the role of the marks.

Associated with the sequence of pairs (Tn, Zn)n≥1 we define the cadlág (right continuous with left-hand limit)
process

N(t, A) =

∞∑
n=1

I(Tn ≤ t, Zn ∈ A), (2.1)

which counts the number of jumps in the time interval [0, t] with values in A ∈ E , where I(A) denotes the indicator
of a set A ∈ F . We abbreviate N(t) = N(t,Z). The natural filtration is defined as

FNt = σ(N(s,A), s ≤ t, A ∈ E).

Assume that N(t, A) possesses an FNt -adapted (each N(t, A) is FNt -measurable) cadlág intensity process λt(A),
assumed to be bounded over finite intervals, informally defined by

λt(A)dt = P (N(dt, A) = 1 | FNt−) + o(dt), (2.2)

where FNt− = ∨s<tFNs is the information prior to time t and o(h)/h→ 0 for h→ 0. We abbreviate λt = λt(Z) for
the intensity of the N(t) process. It can be more informative to write the intensity on the form

λt(A) = λt

∫
A

Gt(dz), (2.3)

where Gt is a probability,
∫
Z Gt(dz) = 1, and is interpreted as the conditional probability given all information

prior to time t and that a jump occurred at time t, that the associated mark will belong to [z, z+dz]. In the sequel

we shall write
∫ b
a

,
∫
Z for

∫
(a,b]

and
∫
z∈Z , respectively.

Assume FNt ⊂ Ft for all t ≥ 0. Then the process

Mt =

∫ t

0

∫
Z
H(s, z)(N(ds, dz)− λs(dz)ds),

where H is an Ft-predictable (indexed by Z) process, becomes a zero mean Ft-martingale whenever

E

[∫ t

0

∫
Z
|H(s, z)|λs(dz)ds

]
<∞.

In particular

E

[∫ t

0

∫
Z
H(s, z)N(ds, dz)

]
= E

[∫ t

0

∫
Z
H(s, z)λs(dz)ds

]
.

In the sequel it should be sufficient to know that, in particular, any process with left-continuous or deterministic
paths (indexed by Z) is predictable.

2



3 The non-ruin probability as an exponential

3.1 The probability of ruin and the Doléans equation

Consider a marked point process (Tn, Yn)n≥1, where the Yn are assumed to be real valued. Assume in this section
that FNt ⊂ Ft for all t ≥ 0.

Consider the risk business

Rt = R0 + Ct −
N(t)∑
i=1

Yi, Yi ∈ R, (3.1)

where Ct is an Ft-adapted process, and R0 is F0-measurable. Furthermore, we assume that Ct is continuous,

satisfying C0 = 0. The Ct process should be interpreted as a premium income process whereas Xt ≡
∑N(t)
i=1 Yi

could represent the total amount of claims occurred over [0, t] with Y1, Y2, . . . representing the individual claim
amounts. Then Yn would normally take only non-negative values. Decomposing Xt in accordance with the jump
times and the size of the jumps, we can write

Xt =

∫ t

0

∫
R
y N(ds, dy).

The time of ruin in its classical sense is defined as

τ = inf{t ≥ 0 |Rt < 0},

and becomes an Ft-stopping time, that is, {τ ≤ t} ∈ Ft, ∀t ≥ 0. Assume throughout that Ct only take non-negative
values, which means that ruin only occurs at the jumps of Rt. We can then write

I(τ ≤ t) = I(τ = 0) +
∑

0<s≤t

I(τ ≥ s, Rs < 0)

= I(τ = 0) +

∫ t

0

∫
R
I(τ ≥ s, Rs− < y)N(ds, dy), (3.2)

where we in the last equality sign have decomposed after the size of the jumps. Define the cadlág processes

Zt = I(τ > t), Qt =

∫ t

0

∫
R
I(Rs− < y)N(ds, dy),

and then rewrite (3.2) as

Zt = I(τ > 0)−
∫ t

0

Zs− dQs,

which is an example of a Doléans equation, see e.g. Liptser and Shiryayev (1989, p. 122). Since Qt is purely
discrete, the solution is given as

Zt = I(τ > 0)
∏

0<s≤t

[1−∆Qs]

= I(τ > 0)
∏

0<s≤t

[
1−

∫
R
I(Rs− < y)N(ds, dy)

]
,

where ∆Qt = Qt −Qt−. We can now state:

Theorem 3.1 The process

Mt = I(τ > t) exp

(∫ t

0

λsGs(Rs)ds

)
, (3.3)
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is an Ft-martingale whenever

E

[
exp

(∫ t

0

λsGs(Rs)ds

)]
<∞, (3.4)

where Gt(x) =
∫
R I(y > x)Gt(dy).

Proof: Since Mt is equivalent to writing

Mt = I(τ > t) exp

(∫ t

0

∫
R
I(Rs < y)λs(dy)ds

)
,

we obtain by use of integration by parts and (3.2), that

Mt = M0 +

∫ t

0

Ms

∫
R
I(Rs < y)λs(dy)ds−

∫ t

0

Ms−

∫
R
I(Rs− < y)N(ds, dy)

= M0 −
∫ t

0

∫
R
Ms− I(Rs− < y)(N(ds, dy)− λs(dy)ds),

which is a stochastic integral of an Ft-predictable process w.r.t. to the martingale measure U(dt, dy) = N(dt, dy)−
λt(dy)dt, which implies that Mt becomes an Ft-martingale. 2

Throughout we shall write Px(A), x ∈ R, for the conditional probability measure P (A |R0 = x), and we write
Ex for the expectation w.r.t. Px.

Consequently, we obtain:

Theorem 3.2 The non-ruin probability satisfies the relation

Px(τ > t)Ex

[
exp

(∫ t

0

λsGs(Rs)ds

)
τ > t

]
= 1, t, x ≥ 0.

Proof: Using the martingale property of Mt together with the fact that M0 = I(τ > 0) = 1 for R0 ≥ 0, we get
that Ex[Mt] = 1 for x ≥ 0, and the assertion follows by conditioning upon {τ > t} and {τ ≤ t} in (3.3). 2

Due to the martingale property of Mt, we can for any T <∞ and x ≥ 0, introduce a new probability measure
on (Ω,F) by

P̃x(A) = Ex[MT I(A)]. (3.5)

We can then view the non-ruin probability in the light of:

Corollary 3.3 For any t ∈ [0, T ], the non-ruin probability satisfies

Px(τ > t) = Ẽx

[
exp

(
−
∫ t

0

λsGs(Rs)ds

)]
, x ≥ 0, (3.6)

where Ẽx is the expectation w.r.t. P̃x.

Proof: Using the martingale property, we obtain

Ẽx

[
exp

(
−
∫ t

0

λsGs(Rs)ds

)]
= Ex

[
MT exp

(
−
∫ t

0

λsGs(Rs)ds

)]

= Ex

[
Ex{MT | Ft} exp

(
−
∫ t

0

λsGs(Rs)ds

)]

= Ex

[
Mt exp

(
−
∫ t

0

λsGs(Rs)ds

)]
= Px(τ > t), x ≥ 0,
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which proves the assertion. 2

Note that (3.6) is consistent in the sense that if T̂ 6= T , say T̂ > T , and we let P̂x be the measure in (3.5)
corresponding to T̂ , and Êx the respective mean, then

Ẽx

[
exp

(
−
∫ t

0

λsGs(Rs)ds

)]
= Êx

[
exp

(
−
∫ t

0

λsGs(Rs)ds

)]
, t ∈ [0, T ].

Repeating the steps in the proof above, we also see that

P̃x(τ > t) = 1, t ∈ [0, T ], x ≥ 0.

The mean in (3.6) seems not possible to evaluate, but the relation can perhaps be applicable for simulation studies.
The martingale in (3.3) is Px-uniformly integrable if and only if Mt → M∞ in L1(Ω,Ft, Px) (the space of

Px-integrable random variables) as t→∞, see e.g. Liptser and Shiryayev (1989, p. 20), where

M∞ = I(τ =∞) exp

(∫ ∞
0

λsGs(Rs)ds

)
.

In particular, we then obtain that Ex[M∞] = 1, x ≥ 0, and hence we could put T = ∞ in the definition of P̃x.
Also, uniform integrability implies that Px(τ = ∞) > 0, since otherwise we cannot have that Ex[M∞] = 1, for
x ≥ 0. Since

sup
t≥0

Mt = exp

(∫ τ

0

λsGs(Rs)ds

)
,

a sufficient and natural condition for uniform integrability is then

Ex

[
exp

(∫ τ

0

λsGs(Rs)ds

)]
<∞.

Under uniform integrability, we can repeat the arguments in Theorem 3.2 and Corollary 3.3 to state:

Theorem 3.4 Suppose Mt is a uniformly integrable martingale. Then, the non-ruin probability in infinite time
satisfies the relation

Px(τ =∞)Ex

[
exp

(∫ ∞
0

λsGs(Rs)ds

)
τ =∞

]
= 1, x ≥ 0,

or with T =∞ in (3.5)

Px(τ =∞) = Ẽx

[
exp

(
−
∫ ∞

0

λsGs(Rs)ds

)]
, x ≥ 0.

3.2 The intensity process for the time of ruin

Alternatively, we can view the ruin problem in the framework of a simpel survival model such that ’alive’ corre-
sponds to non-ruin and ’dead’ to ruin.

Differentiation in (3.6) gives for t ∈ (0, T ):

d

dt
Px(τ > t) = −Ẽx

[
λtGt(Rt) exp

(
−
∫ t

0

λsGs(Rs)ds

)]
= −Ex[ I(τ > t)λtGt(Rt) ]

= −Ex[λtGt(Rt) | τ > t ]Px(τ > t), (3.7)
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and since T < ∞ was arbitrary, we see that these relations hold for all t ≥ 0, and could also be obtained directly
by taking the mean in (3.2). Solving this differential equation with the initial condition Px(τ > 0) = 1 for x ≥ 0,
we get that

Px(τ > t) = exp

(
−
∫ t

0

Ex[λsGs(Rs) | τ ≥ s ]ds

)
, x ≥ 0.

The process

At = I(τ > t)λtGt(Rt),

is the FNt -intensity process of the 1-dimensional counting process Ñ(t) = I(τ ≤ t), and the process

Ãt = I(τ > t)Ex[λtGt(Rt) | τ ≥ t ],

is the F̃t ≡ σ(Ñ(s), s ≤ t) intensity process of Ñ(t), obtained by Ex[At | F̃t]. So the non-ruin probability function
t→ Px(τ > t), x ≥ 0, can be expressed as a ’survival function’, with the deterministic ’mortality rate’ µx(t), where

µx(t) = Ex[λtGt(Rt) | τ ≥ t ], x ≥ 0.

3.3 Infinity time ruin in the classical case

The classical model is when (N(t))t≥0 is assumed to be a homogeneous Poisson process with constant intensity
λ > 0, and Y1, Y2, . . . are non-negative i.i.d. (independent and identically distributed) random variables representing
the individual claim amounts, and are assumed to be independent of N(t). We denote their common distribution
function by G, and assume that

E[Y1] =

∫ ∞
0

G(u)du <∞.

The classical risk business is of the form

Rt = R0 + c t−
N(t)∑
i=1

Yi,

where c > 0 is the constant premium rate. The intensity measure of N(t, A) now reads

λt(dy) = λG(dy).

We shall assume that c > λE[Y1], meaning that we are operating with a safety loading of

ρ =
c

λE[Y1]
− 1.

By the strong law of large numbers this implies that

Rt
t
→ ρλE[Y1] > 0, as t→∞, a.s.

Then since E[Y1] <∞, we have∫ ∞
0

G(Rs)ds <∞, a.s.

Furthermore it is clear that (3.4) is satisfied and hence (3.3) becomes a martingale.
Introduce the function

H(x) =

∫ x

0

G(u)du, x ≥ 0,
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with the understanding that H(x) = 0 for x ≤ 0. Then H is continuous on the whole axis. We will assume that
H is differentiable with derivative H ′(x) = G(x), x > 0, which is satisfied whenever G(x) is continuous. With the
understanding G(x) = 0 for x ≤ 0, H then becomes continuously differentiable on the whole axis with derivative

H ′(x) = G(x), x ∈ R.

Using the change of variable formula, we can then obtain

H(Rt)−H(R0) = c

∫ t

0

H ′(Rs)ds+
∑

0<s≤t

{H(Rs)−H(Rs−)}

= c

∫ t

0

G(Rs)ds+

∫ t

0

{H(Rs)−H(Rs−)}N(ds).

Since Rt →∞ as t→∞, we get∫ ∞
R0

G(u)du = c

∫ ∞
0

G(Rs)ds+

∫ ∞
0

{H(Rs)−H(Rs−)}N(ds).

Thus

λ

∫ ∞
0

G(Rs)ds =
λ

c

∫ ∞
R0

G(u)du+
λ

c

∫ ∞
0

{H(Rs−)−H(Rs)}N(ds),

and then

M∞ = I(τ =∞) exp

(
λ

c

∫ ∞
R0

G(u)du

)
exp

(
λ

c

∫ ∞
0

{H(Rs−)−H(Rs)}N(ds)

)
.

We obtain:

Theorem 3.5 Suppose Mt is a unifomly integrable martingale. Then, the non-ruin probability in infinite time is
given by

Px(τ =∞) = ρx exp

(
−λ
c

∫ ∞
x

G(u)du

)
, x ≥ 0,

where

ρ−1
x = Ex

[
exp

(
λ

c

∫ ∞
0

{H(Rs−)−H(Rs)}N(ds)

)
τ =∞

]
,

or with T =∞ in (3.5)

Px(τ =∞) = ρ̃x exp

(
−λ
c

∫ ∞
x

G(u)du

)
, x ≥ 0,

where

ρ̃x = Ẽx

[
exp

(
λ

c

∫ ∞
0

{H(Rs)−H(Rs−)}N(ds)

)]
.

Proof: Follows by the property Ex[M∞] = 1, x ≥ 0. 2

If necessary, we can always write∫ t

0

{H(Rs)−H(Rs−)}N(ds) =

∫ t

0

∫
R
{H(Rs− − y)−H(Rs−)}N(ds, dy),

to obtain a predictable integrand.
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4 The distribution of the jump process

First, we shall assume that Yn ≥ 0 for all n, implying that Gt is a probability on R+. Secondly, we assume that

Ct ≡ 0.

It is then obvious that

I(τ ≤ t) = I(inf{s ≤ t : R0 −Xs < 0 })

= I(Xt > R0),

and hence the probability of ruin w.r.t. Px in finite time reduces to finding the distribution of the jump process
Xt. The martingale in (3.3) now modifies to

M∗t = I(Xt ≤ R0) exp

(∫ t

0

λsGs(R0 −Xs)ds

)
,

and in particular

Ex

[
I(Xt ≤ x) exp

(∫ t

0

λsGs(x−Xs)ds

)]
= 1, x ≥ 0.

As above we can for any T <∞ introduce the measure

P ∗x (A) = Ex[M∗T I(A) ], x ≥ 0,

and we let E∗x denote the mean w.r.t. P ∗x . As for (3.6), we obtain

P (Xt ≤ x) = E∗x

[
exp

(
−
∫ t

0

λsGs(x−Xs)ds

)]
, t ∈ [0, T ], x ≥ 0.

This is again a complicated mean value, and seems not of much value at first sight. However, we can at least
obtain an integro-differential equation for t → P (Xt ≤ x), when N(t, A) are Poisson processes, implying that the
intensity measure becomes deterministic, such that Gt = 1−Gt now has the interpretation

Gt(x) = P (Yn ≤ x |Tn = t), ∀n ≥ 1.

Put F (t, x) = P (Xt ≤ x), and as for (3.7), we then obtain

dF

dt
(t, x) = −E∗x

[
λtGt(x−Xt) exp

(
−
∫ t

0

λsGs(x−Xs)ds

)]

= −λt F (t, x) + λtE
∗
x

[
Gt(x−Xt) exp

(
−
∫ t

0

λsGs(x−Xs)ds

)]
= −λt F (t, x) + λtEx [ I(Xt ≤ x)Gt(x−Xt) ]

= −λt F (t, x) + λt

∫ x

0

Gt(x− y)F (t, dy)

= −λt F (t, x) + λt

∫ x

0

F (t, x− y)Gt(dy), t ∈ (0, T ), (4.1)

and since T is arbitrary the integro-differential equation holds for all t ≥ 0.
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Since the cadlág process I(Xt ≤ x) is purely discrete, we could also establish (4.1) by first writing (the change of
variable formula)

I(Xt ≤ x)− I(x ≥ 0) =
∑

0<s≤t

{I(Xs ≤ x)− I(Xs− ≤ x)}

=

∫ t

0

∫
R
{I(Xs− + y ≤ x)− I(X̂s− ≤ x)}N(ds, dy), (4.2)

where we have decomposed to obtain an FNt -predictable integrand. Taking the mean on both sides and using that
the intensity is deterministic, we arrive at (4.1). Note that such mathematical steps do not require that Yn ≥ 0,
see below.

In cases where N(t, A) do not possess independent increments, it seems that we instead must use a ’backward’
approach, obtained by first introducing the cadlág process

X̂t =

N(T )∑
i=N(t)+1

Yi

=

∫ T

t

∫
R
y N(ds, dy), t ∈ [0, T ],

where we throughout use the convention
∑Nt
i=Nt+1 Yi = 0 for any t ≥ 0.

For the sake of illustration, we shall assume that the intensity process of N(t, A) fluctuates in accordance with a
Markovian environment. That is, we assume there is given an (observable) Markov jump process (Θt)t≥0, assumed
to have finite state space J = {1, . . . , J}, such that λt(A) can depend on the history at time t only via Θt. To study
this model in the framework of a marked point process, we let the points Ti represent the jump times of either Xt

or Θt, such that the corresponding marks are represented by the pairs (Yi, θi) and (θi−1, θi), respectively, where
ΘTi = θi ∈ J . To avoid ambiguity, we shall assume that these two kind of events cannot occur simultaneously.
Introduce the counting processes

Ni(t, B) =
∑
k≥1

I(Tk ≤ t, Yk ∈ B, ΘTk = i), B ∈ B, i ∈ J .

We assume that there for each i ∈ J exist a deterministic measure λi(t, B) on B, such that the intensity process
of Ni(t, B) is given by

P (Ni(dt, dy) = 1 | FNt−) + o(dt) = λi(t, dy)I(Θt = i)dt.

Furthermore, we define

Pij(s, t) = P (Θt = j |Θs = i), s ≤ t,

the transition probabilities of (Θt)t≥0, and we assume that the transition intensities λij(t), i 6= j, exist, defined by

λij(t) = lim
h↘0

Pij(t, t+ h)

h
.

Define the function

F̂i(t, x) = P (X̂t ≤ x |Θt = i), i ∈ J , t ∈ [0, T ].

Throughout we write
∑
i and

∑
i6=j instead of

∑
i∈J and

∑
i∈J

∑
j 6=i, respectively.
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The process I(X̂t ≤ r), r ∈ R, is purely discrete and cadlág, satisfying X̂T = 0, so following the steps in (4.2), we
obtain

I(r ≥ 0)− I(X̂t ≤ r) =
∑

t<s≤T

{I(X̂s ≤ r)− I(X̂s− ≤ r)}

=
∑
i

∫ T

t

∫
R
{I(X̂s ≤ r)− I(X̂s + y ≤ r)}Ni(ds, dy),

where we have not decomposed to obtain an FNt -predictable (left-continuous) integrand, so it seems not of much
use to take the mean directly. However, using the Markov property together with the relation E[E( | FNs ) | FNt ] =
E( | FNt ) for s ≥ t, we obtain by taking conditional mean, that

I(r ≥ 0)− PΘt(X̂t ≤ r) = E

[∑
i

∫ T

t

∫
R
{I(X̂s ≤ r)− I(X̂s ≤ r − y)}Ni(ds, dy) FNt

]

= E

[∑
i

∫ T

t

∫
R
{Pi(X̂s ≤ r)− Pi(X̂s ≤ r − y)}Ni(ds, dy) FNt

]

= E

[∑
i

∫ T

t

∫
R
{F̂i(s, r)− F̂i(s, r − y)}λi(s, dy)I(Θs = i)ds Θt

]
,

(4.3)

where the last equality sign follows by the martingale property of the process

Ot =
∑
i

∫ T

t

∫
R
{F̂i(s, r)− F̂i(s, r − y)}(Ni(ds, dy)− λi(s, dy)I(Θs = i)ds).

Using the transition probabilities, we can modify (4.3) to

Fk(t, r) = I(r ≥ 0)−
∑
i

∫ T

t

∫
R
{F̂i(s, r)− F̂i(s, r − y)}λi(s, dy)Pki(t, s)ds. (4.4)

Using then Kolmogorov’s backward differential equations

dPij
dt

(t, u) = λi(t)Pij(t, u)−
∑
l 6=i

λil(t)Plj(t, u),

where λi(t) =
∑
j 6=i λij(t), we can state:

Theorem 4.1 Over the continuity points of λi(t, B) and λij(t), the functions t → F̂k(t, r) satisfy the system of
differential equations

dF̂i
dt

(t, r) = F̂i(t, r)(λi(t) + λ̄i(t))−
∫
R
F̂i(t, r − y)λi(t, dy)

−
∑
j 6=i

F̂j(t, r)λij(t), t ∈ (0, T ), i ∈ J , r ∈ R,

where λi(t) = λi(t,R).

Proof: Follows by differentiation in (4.4). 2
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The integral equations read

F̂i(t, r) = I(r ≥ 0)e−
∫ T
t

(λi(s)+λi(s))ds +
∑
j 6=i

∫ T

t

e−
∫ η
t

(λi(s)+λi(s))dsF̂j(η, r)λij(η)dη

+

∫ T

t

∫
R
e−

∫ η
t

(λi(s)+λi(s))dsF̂i(η, r − y)λi(η, dy)dη.

Consequently, one would observe that the process

M̂t = F̂Θt(t, x−Xt), x ∈ R,

becomes an FNt -martingale over [0, T ].

Note that the integrals∫
R
F̂i(t, r − y)λi(t, dy),

above reduces to∫ r

0

F̂i(t, r − y)λi(t, dy),

in the case where the Yn are assumed to take only non-negative values, which is convenient in a numerical imple-
mentation.

Finally, we shall present a martingale approach which seems convenient for analysing boundary value problems,
hereunder the distribution of an exit time.

5 A martingale property related to exit times

Let Y = (Yt)t≥0 be an Ft-adapted cadlág process, taking values in Rn.
For a D ∈ B n, we define

τD = inf{t ≥ 0|Yt 6∈ D}, D ∈ B n, (5.1)

the first exit time from D, which is a Markov time, that is, {τD ≤ t} ∈ Ft. We assume now that Yt is an Ft-Markov
process, that is, σ(Ys, s ≥ t) and Ft are independent given Yt. We fix a period of time T ≤ ∞ and define the
conditional probabilities

Ψ(t, y) = P ( inf
t≤s<T

{Ys 6∈ D} |Yt = y), y ∈ Rn.

By the Markov property, we have

Ψ(t, Yt) = P ( inf
t≤s<T

{Ys 6∈ D} |Ft),

and furthermore, by definition,

Ψ(t, y) = 1, y 6∈ D, t ∈ [0, T ). (5.2)

Also, we have the initial condition

Ψ(T, y) = 0, y ∈ D, T <∞.

11



For any t ∈ [0, T ), we write

I(τD < T ) = I(τD ≤ t) + I(t < τD < T )

= I(τD ≤ t) + I(τD > t)I( inf
t≤s<T

{Ys 6∈ D}). (5.3)

Defining Mt = P (τD < T | Ft) = E(I(τD < T ) | Ft), and taking conditional expectation w.r.t. Ft in (5.3) and
using the Markov property, we get

Mt = I(τD ≤ t) + P (t < τD < T | Ft)

= I(τD ≤ t) + I(τD > t)P ( inf
t≤s<T

{Ys 6∈ D} |Ft)

= I(τD ≤ t) + I(τD > t)Ψ(t, Yt). (5.4)

If Ψ is a continuous function from R+ ×D to [0, 1], then Mt becomes cadlág with left-hand limits

Mt− = I(τD < t) + I(τD ≥ t)Ψ(t, Yt−).

In the sequel, we will always assume that Ψ is chosen such that Mt becomes cadlág.
Inserting t ∧ τD in (5.4), we obtain that

Mt∧τD = I(τD ≤ t) + I(τD > t)Ψ(t ∧ τD, Yt∧τD )

= Ψ(t ∧ τD, Yt∧τD ), t ∈ [0, T ], (5.5)

where the first equality sign follows by I(τD ≤ t ∧ τD) = I(τD ≤ t), and the second by (5.2): Ψ(τD, YτD ) = 1,
τD < T , and in the case τD ≥ T , (5.5) is trivially satisfied. Thus we have obtained (optional sampling) that
Ψ(t ∧ τD, Yt∧τD ) becomes a (bounded) Ft-martingale over [0, T ].

Another relation: Using the optional sampling theorem, we obtain by taking conditional expectation on both
sides in (5.5) w.r.t. the Ft∧τD -measurable stochastic variable (t ∧ τD, Yt∧τD ), that

P (τ < T | t ∧ τD, Yt∧τD ) = Ψ(t ∧ τD, Yt∧τD ).

More generally: Fix an arbitrary t′ ∈ [0, T ) and define

τ ′D = inf{t ≥ t′|Yt 6∈ D}, (5.6)

which is the first exit time after t′, and repeat the steps above to obtain that

M ′t∧τ ′D
= Ψ(t ∧ τ ′D, Yt∧τ ′D ), t ∈ [t′, T ], (5.7)

becomes an Ft-martingale, where

M ′t = P (t′ < τ ′D < T | Ft)

= I(τ ′D ≤ t) + I(τ ′D > t)Ψ(t, Yt), t ∈ [t′, T ]. (5.8)

We observe the relations (we only illustrate with τD and Mt)

MτD = I(τD < T ), MτD = E(MτD | FτD−),

since τD is FτD−-measurable, and FτD− ⊂ FτD , see Brémaud (1981, p. 3). If furthermore τD is a predictable
stopping time then (see Liptser and Shiryayev, 1989, p. 21)

MτD− = E(MτD | FτD−),

and therefore

MτD− = MτD .
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So in particular for τD <∞ and predictable, we have

Ψ(τD, YτD ) = Ψ(τD−, YτD−),

meaning that we do not have a discontinuity of Ψ at the bondary of the domain D.

For an illustration consider the PD (piecewise-deterministic) Markov process

Rt = R0 +

∫ t

0

b(s,Rs)ds−
N(t)∑
i=1

Yi,

where the mapping (t, r)→ b(t, r) from R+×R to R, is assumed to be piecewise continuous in t and r, and could
represent premium income or annuity payments to the insured. To obtain the Markov property we will assume
that the intensity of N(t, A) is deterministic (N(t, A) is a Poisson process for each A).

The time of ruin

τ = inf{t ≥ 0 : Rt < 0},

corresponds to τD∗ , where D∗ = {r ∈ R : r ≥ 0}. Also we define

τ ′ = inf{t ≥ t′ : Rt < 0},

the first time of exit from D∗ after time t′. It is then possible to state:

Theorem 5.1 For any fixed t′ ∈ [0, T ) the process Ψ(t ∧ τ ′, Rt∧τ ′) is a (uniformly integrable) martingale over
[t′, T ]. Suppose that (t, r) → Φ(t, r) = 1 − Ψ(t, r) from (0, T ) × (0,∞) to [0, 1] has continuous partial derivatives,
denoted ∂Φ

∂t (t, r) and ∂Φ
∂r (t, r), respectively. Then over the continuity points of λt(A) and b(t, r), Φ(t, r) satisfies the

partial integro-differential equation

∂Φ

∂t
(t, r) +

∂Φ

∂r
(t, r)b(t, r)

= Φ(t, r)λt −
∫
{y | r≥y}

Φ(t, r − y)λt(dy), t ∈ (0, T ), r > 0. (5.9)

Proof: The first part follows by (5.7). The second part follows by first introducing the stopping time

τ ′o = inf{t ≥ t′ : Rt ≤ 0},

which is the first time after t′ that Rt exits the interior of D∗. Then use the change of variable technique, as
described in Møller (1995), on the martingale

M̃t = Φ(t ∧ τ ′ ∧ τ ′o, Rt∧τ ′∧τ ′o), t ∈ [t′, T ].

The reason for introducing τ ′o, is that we assumed differentiability of Φ only on the interior of D∗. 2

Equation (5.9) implies that Φ(t, Rt) for Rt > 0 satisfies AΦ = 0, where A is the extended generator of Rt, but
note that Φ(t, Rt) in general not becomes a martingale.
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